Metamath Proof Explorer


Theorem rngqiprngim

Description: F is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
rngqiprngim.c C = Base Q
rngqiprngim.p P = Q × 𝑠 J
rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
Assertion rngqiprngim φ F R RngIso P

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 rngqiprngim.c C = Base Q
11 rngqiprngim.p P = Q × 𝑠 J
12 rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
13 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngho φ F R RngHom P
14 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimf1 φ F : B 1-1 C × I
15 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfo φ F : B onto C × I
16 df-f1o F : B 1-1 onto C × I F : B 1-1 C × I F : B onto C × I
17 14 15 16 sylanbrc φ F : B 1-1 onto C × I
18 1 2 3 4 5 6 7 8 9 10 11 rngqipbas φ Base P = C × I
19 18 f1oeq3d φ F : B 1-1 onto Base P F : B 1-1 onto C × I
20 17 19 mpbird φ F : B 1-1 onto Base P
21 11 ovexi P V
22 eqid Base P = Base P
23 5 22 isrngim2 R Rng P V F R RngIso P F R RngHom P F : B 1-1 onto Base P
24 1 21 23 sylancl φ F R RngIso P F R RngHom P F : B 1-1 onto Base P
25 13 20 24 mpbir2and φ F R RngIso P