Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idl1cntr.r |
|
2 |
|
rng2idl1cntr.i |
|
3 |
|
rng2idl1cntr.j |
|
4 |
|
rng2idl1cntr.u |
|
5 |
|
rng2idl1cntr.1 |
|
6 |
|
rng2idl1cntr.m |
|
7 |
|
eqid |
|
8 |
3 7
|
ressbasss |
|
9 |
|
eqid |
|
10 |
9 5
|
ringidcl |
|
11 |
4 10
|
syl |
|
12 |
8 11
|
sselid |
|
13 |
1
|
adantr |
|
14 |
12
|
adantr |
|
15 |
|
simpr |
|
16 |
|
eqid |
|
17 |
7 16
|
rngass |
|
18 |
13 14 15 14 17
|
syl13anc |
|
19 |
|
eqid |
|
20 |
4
|
adantr |
|
21 |
1 2 3 4 7 16 5
|
rngqiprngghmlem1 |
|
22 |
9 19 5 20 21
|
ringridmd |
|
23 |
3 16
|
ressmulr |
|
24 |
2 23
|
syl |
|
25 |
24
|
oveqd |
|
26 |
25
|
eqeq1d |
|
27 |
26
|
adantr |
|
28 |
22 27
|
mpbird |
|
29 |
2
|
2idllidld |
|
30 |
|
eqid |
|
31 |
7 30
|
lidlss |
|
32 |
3 7
|
ressbas2 |
|
33 |
32
|
eqcomd |
|
34 |
29 31 33
|
3syl |
|
35 |
34 29
|
eqeltrd |
|
36 |
2 3 9
|
2idlbas |
|
37 |
|
ringrng |
|
38 |
4 37
|
syl |
|
39 |
3 38
|
eqeltrrid |
|
40 |
1 2 39
|
rng2idlsubrng |
|
41 |
36 40
|
eqeltrd |
|
42 |
|
subrngsubg |
|
43 |
|
eqid |
|
44 |
43
|
subg0cl |
|
45 |
41 42 44
|
3syl |
|
46 |
1 35 45
|
3jca |
|
47 |
11
|
anim1ci |
|
48 |
43 7 16 30
|
rnglidlmcl |
|
49 |
46 47 48
|
syl2an2r |
|
50 |
9 19 5 20 49
|
ringlidmd |
|
51 |
24
|
oveqd |
|
52 |
51
|
eqeq1d |
|
53 |
52
|
adantr |
|
54 |
50 53
|
mpbird |
|
55 |
18 28 54
|
3eqtr3d |
|
56 |
55
|
ralrimiva |
|
57 |
|
ssidd |
|
58 |
6 7
|
mgpbas |
|
59 |
6 16
|
mgpplusg |
|
60 |
|
eqid |
|
61 |
58 59 60
|
elcntz |
|
62 |
57 61
|
syl |
|
63 |
12 56 62
|
mpbir2and |
|
64 |
58 60
|
cntrval |
|
65 |
63 64
|
eleqtrdi |
|