Metamath Proof Explorer


Theorem rng2idl1cntr

Description: The unity of a two-sided ideal of a non-unital ring is central, i.e., an element of the center of the multiplicative semigroup of the non-unital ring. This is part of the proof given in MathOverflow, which seems to be sufficient to show that F given below (see rngqiprngimf ) is an isomorphism. In our proof, however we show that F is linear regarding the multiplication ( rngqiprnglin ) via rngqiprnglinlem1 instead. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses rng2idl1cntr.r φ R Rng
rng2idl1cntr.i φ I 2Ideal R
rng2idl1cntr.j J = R 𝑠 I
rng2idl1cntr.u φ J Ring
rng2idl1cntr.1 1 ˙ = 1 J
rng2idl1cntr.m M = mulGrp R
Assertion rng2idl1cntr φ 1 ˙ Cntr M

Proof

Step Hyp Ref Expression
1 rng2idl1cntr.r φ R Rng
2 rng2idl1cntr.i φ I 2Ideal R
3 rng2idl1cntr.j J = R 𝑠 I
4 rng2idl1cntr.u φ J Ring
5 rng2idl1cntr.1 1 ˙ = 1 J
6 rng2idl1cntr.m M = mulGrp R
7 eqid Base R = Base R
8 3 7 ressbasss Base J Base R
9 eqid Base J = Base J
10 9 5 ringidcl J Ring 1 ˙ Base J
11 4 10 syl φ 1 ˙ Base J
12 8 11 sselid φ 1 ˙ Base R
13 1 adantr φ x Base R R Rng
14 12 adantr φ x Base R 1 ˙ Base R
15 simpr φ x Base R x Base R
16 eqid R = R
17 7 16 rngass R Rng 1 ˙ Base R x Base R 1 ˙ Base R 1 ˙ R x R 1 ˙ = 1 ˙ R x R 1 ˙
18 13 14 15 14 17 syl13anc φ x Base R 1 ˙ R x R 1 ˙ = 1 ˙ R x R 1 ˙
19 eqid J = J
20 4 adantr φ x Base R J Ring
21 1 2 3 4 7 16 5 rngqiprngghmlem1 φ x Base R 1 ˙ R x Base J
22 9 19 5 20 21 ringridmd φ x Base R 1 ˙ R x J 1 ˙ = 1 ˙ R x
23 3 16 ressmulr I 2Ideal R R = J
24 2 23 syl φ R = J
25 24 oveqd φ 1 ˙ R x R 1 ˙ = 1 ˙ R x J 1 ˙
26 25 eqeq1d φ 1 ˙ R x R 1 ˙ = 1 ˙ R x 1 ˙ R x J 1 ˙ = 1 ˙ R x
27 26 adantr φ x Base R 1 ˙ R x R 1 ˙ = 1 ˙ R x 1 ˙ R x J 1 ˙ = 1 ˙ R x
28 22 27 mpbird φ x Base R 1 ˙ R x R 1 ˙ = 1 ˙ R x
29 2 2idllidld φ I LIdeal R
30 eqid LIdeal R = LIdeal R
31 7 30 lidlss I LIdeal R I Base R
32 3 7 ressbas2 I Base R I = Base J
33 32 eqcomd I Base R Base J = I
34 29 31 33 3syl φ Base J = I
35 34 29 eqeltrd φ Base J LIdeal R
36 2 3 9 2idlbas φ Base J = I
37 ringrng J Ring J Rng
38 4 37 syl φ J Rng
39 3 38 eqeltrrid φ R 𝑠 I Rng
40 1 2 39 rng2idlsubrng φ I SubRng R
41 36 40 eqeltrd φ Base J SubRng R
42 subrngsubg Base J SubRng R Base J SubGrp R
43 eqid 0 R = 0 R
44 43 subg0cl Base J SubGrp R 0 R Base J
45 41 42 44 3syl φ 0 R Base J
46 1 35 45 3jca φ R Rng Base J LIdeal R 0 R Base J
47 11 anim1ci φ x Base R x Base R 1 ˙ Base J
48 43 7 16 30 rnglidlmcl R Rng Base J LIdeal R 0 R Base J x Base R 1 ˙ Base J x R 1 ˙ Base J
49 46 47 48 syl2an2r φ x Base R x R 1 ˙ Base J
50 9 19 5 20 49 ringlidmd φ x Base R 1 ˙ J x R 1 ˙ = x R 1 ˙
51 24 oveqd φ 1 ˙ R x R 1 ˙ = 1 ˙ J x R 1 ˙
52 51 eqeq1d φ 1 ˙ R x R 1 ˙ = x R 1 ˙ 1 ˙ J x R 1 ˙ = x R 1 ˙
53 52 adantr φ x Base R 1 ˙ R x R 1 ˙ = x R 1 ˙ 1 ˙ J x R 1 ˙ = x R 1 ˙
54 50 53 mpbird φ x Base R 1 ˙ R x R 1 ˙ = x R 1 ˙
55 18 28 54 3eqtr3d φ x Base R 1 ˙ R x = x R 1 ˙
56 55 ralrimiva φ x Base R 1 ˙ R x = x R 1 ˙
57 ssidd φ Base R Base R
58 6 7 mgpbas Base R = Base M
59 6 16 mgpplusg R = + M
60 eqid Cntz M = Cntz M
61 58 59 60 elcntz Base R Base R 1 ˙ Cntz M Base R 1 ˙ Base R x Base R 1 ˙ R x = x R 1 ˙
62 57 61 syl φ 1 ˙ Cntz M Base R 1 ˙ Base R x Base R 1 ˙ R x = x R 1 ˙
63 12 56 62 mpbir2and φ 1 ˙ Cntz M Base R
64 58 60 cntrval Cntz M Base R = Cntr M
65 63 64 eleqtrdi φ 1 ˙ Cntr M