| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idl1cntr.r |
|
| 2 |
|
rng2idl1cntr.i |
|
| 3 |
|
rng2idl1cntr.j |
|
| 4 |
|
rng2idl1cntr.u |
|
| 5 |
|
rng2idl1cntr.1 |
|
| 6 |
|
rng2idl1cntr.m |
|
| 7 |
|
eqid |
|
| 8 |
3 7
|
ressbasss |
|
| 9 |
|
eqid |
|
| 10 |
9 5
|
ringidcl |
|
| 11 |
4 10
|
syl |
|
| 12 |
8 11
|
sselid |
|
| 13 |
1
|
adantr |
|
| 14 |
12
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
|
eqid |
|
| 17 |
7 16
|
rngass |
|
| 18 |
13 14 15 14 17
|
syl13anc |
|
| 19 |
|
eqid |
|
| 20 |
4
|
adantr |
|
| 21 |
1 2 3 4 7 16 5
|
rngqiprngghmlem1 |
|
| 22 |
9 19 5 20 21
|
ringridmd |
|
| 23 |
3 16
|
ressmulr |
|
| 24 |
2 23
|
syl |
|
| 25 |
24
|
oveqd |
|
| 26 |
25
|
eqeq1d |
|
| 27 |
26
|
adantr |
|
| 28 |
22 27
|
mpbird |
|
| 29 |
2
|
2idllidld |
|
| 30 |
|
eqid |
|
| 31 |
7 30
|
lidlss |
|
| 32 |
3 7
|
ressbas2 |
|
| 33 |
32
|
eqcomd |
|
| 34 |
29 31 33
|
3syl |
|
| 35 |
34 29
|
eqeltrd |
|
| 36 |
2 3 9
|
2idlbas |
|
| 37 |
|
ringrng |
|
| 38 |
4 37
|
syl |
|
| 39 |
3 38
|
eqeltrrid |
|
| 40 |
1 2 39
|
rng2idlsubrng |
|
| 41 |
36 40
|
eqeltrd |
|
| 42 |
|
subrngsubg |
|
| 43 |
|
eqid |
|
| 44 |
43
|
subg0cl |
|
| 45 |
41 42 44
|
3syl |
|
| 46 |
1 35 45
|
3jca |
|
| 47 |
11
|
anim1ci |
|
| 48 |
43 7 16 30
|
rnglidlmcl |
|
| 49 |
46 47 48
|
syl2an2r |
|
| 50 |
9 19 5 20 49
|
ringlidmd |
|
| 51 |
24
|
oveqd |
|
| 52 |
51
|
eqeq1d |
|
| 53 |
52
|
adantr |
|
| 54 |
50 53
|
mpbird |
|
| 55 |
18 28 54
|
3eqtr3d |
|
| 56 |
55
|
ralrimiva |
|
| 57 |
|
ssidd |
|
| 58 |
6 7
|
mgpbas |
|
| 59 |
6 16
|
mgpplusg |
|
| 60 |
|
eqid |
|
| 61 |
58 59 60
|
elcntz |
|
| 62 |
57 61
|
syl |
|
| 63 |
12 56 62
|
mpbir2and |
|
| 64 |
58 60
|
cntrval |
|
| 65 |
63 64
|
eleqtrdi |
|