| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idl1cntr.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rng2idl1cntr.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 3 |  | rng2idl1cntr.j | ⊢ 𝐽  =  ( 𝑅  ↾s  𝐼 ) | 
						
							| 4 |  | rng2idl1cntr.u | ⊢ ( 𝜑  →  𝐽  ∈  Ring ) | 
						
							| 5 |  | rng2idl1cntr.1 | ⊢  1   =  ( 1r ‘ 𝐽 ) | 
						
							| 6 |  | rng2idl1cntr.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 8 | 3 7 | ressbasss | ⊢ ( Base ‘ 𝐽 )  ⊆  ( Base ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐽 )  =  ( Base ‘ 𝐽 ) | 
						
							| 10 | 9 5 | ringidcl | ⊢ ( 𝐽  ∈  Ring  →   1   ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →   1   ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 12 | 8 11 | sselid | ⊢ ( 𝜑  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 13 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  𝑅  ∈  Rng ) | 
						
							| 14 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  𝑥  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 16 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 17 | 7 16 | rngass | ⊢ ( ( 𝑅  ∈  Rng  ∧  (  1   ∈  ( Base ‘ 𝑅 )  ∧  𝑥  ∈  ( Base ‘ 𝑅 )  ∧   1   ∈  ( Base ‘ 𝑅 ) ) )  →  ( (  1  ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 )  1  )  =  (  1  ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) ) | 
						
							| 18 | 13 14 15 14 17 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( (  1  ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 )  1  )  =  (  1  ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( .r ‘ 𝐽 )  =  ( .r ‘ 𝐽 ) | 
						
							| 20 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  𝐽  ∈  Ring ) | 
						
							| 21 | 1 2 3 4 7 16 5 | rngqiprngghmlem1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  (  1  ( .r ‘ 𝑅 ) 𝑥 )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 22 | 9 19 5 20 21 | ringridmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( (  1  ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝐽 )  1  )  =  (  1  ( .r ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 23 | 3 16 | ressmulr | ⊢ ( 𝐼  ∈  ( 2Ideal ‘ 𝑅 )  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝐽 ) ) | 
						
							| 24 | 2 23 | syl | ⊢ ( 𝜑  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝐽 ) ) | 
						
							| 25 | 24 | oveqd | ⊢ ( 𝜑  →  ( (  1  ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 )  1  )  =  ( (  1  ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝐽 )  1  ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( 𝜑  →  ( ( (  1  ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 )  1  )  =  (  1  ( .r ‘ 𝑅 ) 𝑥 )  ↔  ( (  1  ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝐽 )  1  )  =  (  1  ( .r ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( (  1  ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 )  1  )  =  (  1  ( .r ‘ 𝑅 ) 𝑥 )  ↔  ( (  1  ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝐽 )  1  )  =  (  1  ( .r ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 28 | 22 27 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( (  1  ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 )  1  )  =  (  1  ( .r ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 29 | 2 | 2idllidld | ⊢ ( 𝜑  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 30 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 31 | 7 30 | lidlss | ⊢ ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  →  𝐼  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 32 | 3 7 | ressbas2 | ⊢ ( 𝐼  ⊆  ( Base ‘ 𝑅 )  →  𝐼  =  ( Base ‘ 𝐽 ) ) | 
						
							| 33 | 32 | eqcomd | ⊢ ( 𝐼  ⊆  ( Base ‘ 𝑅 )  →  ( Base ‘ 𝐽 )  =  𝐼 ) | 
						
							| 34 | 29 31 33 | 3syl | ⊢ ( 𝜑  →  ( Base ‘ 𝐽 )  =  𝐼 ) | 
						
							| 35 | 34 29 | eqeltrd | ⊢ ( 𝜑  →  ( Base ‘ 𝐽 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 36 | 2 3 9 | 2idlbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐽 )  =  𝐼 ) | 
						
							| 37 |  | ringrng | ⊢ ( 𝐽  ∈  Ring  →  𝐽  ∈  Rng ) | 
						
							| 38 | 4 37 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Rng ) | 
						
							| 39 | 3 38 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝐼 )  ∈  Rng ) | 
						
							| 40 | 1 2 39 | rng2idlsubrng | ⊢ ( 𝜑  →  𝐼  ∈  ( SubRng ‘ 𝑅 ) ) | 
						
							| 41 | 36 40 | eqeltrd | ⊢ ( 𝜑  →  ( Base ‘ 𝐽 )  ∈  ( SubRng ‘ 𝑅 ) ) | 
						
							| 42 |  | subrngsubg | ⊢ ( ( Base ‘ 𝐽 )  ∈  ( SubRng ‘ 𝑅 )  →  ( Base ‘ 𝐽 )  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 43 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 44 | 43 | subg0cl | ⊢ ( ( Base ‘ 𝐽 )  ∈  ( SubGrp ‘ 𝑅 )  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 45 | 41 42 44 | 3syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 46 | 1 35 45 | 3jca | ⊢ ( 𝜑  →  ( 𝑅  ∈  Rng  ∧  ( Base ‘ 𝐽 )  ∈  ( LIdeal ‘ 𝑅 )  ∧  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝐽 ) ) ) | 
						
							| 47 | 11 | anim1ci | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧   1   ∈  ( Base ‘ 𝐽 ) ) ) | 
						
							| 48 | 43 7 16 30 | rnglidlmcl | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  ( Base ‘ 𝐽 )  ∈  ( LIdeal ‘ 𝑅 )  ∧  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝐽 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧   1   ∈  ( Base ‘ 𝐽 ) ) )  →  ( 𝑥 ( .r ‘ 𝑅 )  1  )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 49 | 46 47 48 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥 ( .r ‘ 𝑅 )  1  )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 50 | 9 19 5 20 49 | ringlidmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  (  1  ( .r ‘ 𝐽 ) ( 𝑥 ( .r ‘ 𝑅 )  1  ) )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) | 
						
							| 51 | 24 | oveqd | ⊢ ( 𝜑  →  (  1  ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 )  1  ) )  =  (  1  ( .r ‘ 𝐽 ) ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) ) | 
						
							| 52 | 51 | eqeq1d | ⊢ ( 𝜑  →  ( (  1  ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 )  1  ) )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  )  ↔  (  1  ( .r ‘ 𝐽 ) ( 𝑥 ( .r ‘ 𝑅 )  1  ) )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( (  1  ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 )  1  ) )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  )  ↔  (  1  ( .r ‘ 𝐽 ) ( 𝑥 ( .r ‘ 𝑅 )  1  ) )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) ) | 
						
							| 54 | 50 53 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  (  1  ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 )  1  ) )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) | 
						
							| 55 | 18 28 54 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  (  1  ( .r ‘ 𝑅 ) 𝑥 )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) | 
						
							| 56 | 55 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) (  1  ( .r ‘ 𝑅 ) 𝑥 )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) | 
						
							| 57 |  | ssidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 58 | 6 7 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑀 ) | 
						
							| 59 | 6 16 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝑀 ) | 
						
							| 60 |  | eqid | ⊢ ( Cntz ‘ 𝑀 )  =  ( Cntz ‘ 𝑀 ) | 
						
							| 61 | 58 59 60 | elcntz | ⊢ ( ( Base ‘ 𝑅 )  ⊆  ( Base ‘ 𝑅 )  →  (  1   ∈  ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) )  ↔  (  1   ∈  ( Base ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) (  1  ( .r ‘ 𝑅 ) 𝑥 )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) ) ) | 
						
							| 62 | 57 61 | syl | ⊢ ( 𝜑  →  (  1   ∈  ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) )  ↔  (  1   ∈  ( Base ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) (  1  ( .r ‘ 𝑅 ) 𝑥 )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) ) ) | 
						
							| 63 | 12 56 62 | mpbir2and | ⊢ ( 𝜑  →   1   ∈  ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 64 | 58 60 | cntrval | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) )  =  ( Cntr ‘ 𝑀 ) | 
						
							| 65 | 63 64 | eleqtrdi | ⊢ ( 𝜑  →   1   ∈  ( Cntr ‘ 𝑀 ) ) |