Metamath Proof Explorer


Theorem rng2idl1cntr

Description: The unity of a two-sided ideal of a non-unital ring is central, i.e., an element of the center of the multiplicative semigroup of the non-unital ring. This is part of the proof given in MathOverflow, which seems to be sufficient to show that F given below (see rngqiprngimf ) is an isomorphism. In our proof, however we show that F is linear regarding the multiplication ( rngqiprnglin ) via rngqiprnglinlem1 instead. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses rng2idl1cntr.r ( 𝜑𝑅 ∈ Rng )
rng2idl1cntr.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idl1cntr.j 𝐽 = ( 𝑅s 𝐼 )
rng2idl1cntr.u ( 𝜑𝐽 ∈ Ring )
rng2idl1cntr.1 1 = ( 1r𝐽 )
rng2idl1cntr.m 𝑀 = ( mulGrp ‘ 𝑅 )
Assertion rng2idl1cntr ( 𝜑1 ∈ ( Cntr ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 rng2idl1cntr.r ( 𝜑𝑅 ∈ Rng )
2 rng2idl1cntr.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idl1cntr.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idl1cntr.u ( 𝜑𝐽 ∈ Ring )
5 rng2idl1cntr.1 1 = ( 1r𝐽 )
6 rng2idl1cntr.m 𝑀 = ( mulGrp ‘ 𝑅 )
7 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
8 3 7 ressbasss ( Base ‘ 𝐽 ) ⊆ ( Base ‘ 𝑅 )
9 eqid ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 )
10 9 5 ringidcl ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) )
11 4 10 syl ( 𝜑1 ∈ ( Base ‘ 𝐽 ) )
12 8 11 sselid ( 𝜑1 ∈ ( Base ‘ 𝑅 ) )
13 1 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Rng )
14 12 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → 1 ∈ ( Base ‘ 𝑅 ) )
15 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) )
16 eqid ( .r𝑅 ) = ( .r𝑅 )
17 7 16 rngass ( ( 𝑅 ∈ Rng ∧ ( 1 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1 ( .r𝑅 ) 𝑥 ) ( .r𝑅 ) 1 ) = ( 1 ( .r𝑅 ) ( 𝑥 ( .r𝑅 ) 1 ) ) )
18 13 14 15 14 17 syl13anc ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1 ( .r𝑅 ) 𝑥 ) ( .r𝑅 ) 1 ) = ( 1 ( .r𝑅 ) ( 𝑥 ( .r𝑅 ) 1 ) ) )
19 eqid ( .r𝐽 ) = ( .r𝐽 )
20 4 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐽 ∈ Ring )
21 1 2 3 4 7 16 5 rngqiprngghmlem1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝐽 ) )
22 9 19 5 20 21 ringridmd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1 ( .r𝑅 ) 𝑥 ) ( .r𝐽 ) 1 ) = ( 1 ( .r𝑅 ) 𝑥 ) )
23 3 16 ressmulr ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → ( .r𝑅 ) = ( .r𝐽 ) )
24 2 23 syl ( 𝜑 → ( .r𝑅 ) = ( .r𝐽 ) )
25 24 oveqd ( 𝜑 → ( ( 1 ( .r𝑅 ) 𝑥 ) ( .r𝑅 ) 1 ) = ( ( 1 ( .r𝑅 ) 𝑥 ) ( .r𝐽 ) 1 ) )
26 25 eqeq1d ( 𝜑 → ( ( ( 1 ( .r𝑅 ) 𝑥 ) ( .r𝑅 ) 1 ) = ( 1 ( .r𝑅 ) 𝑥 ) ↔ ( ( 1 ( .r𝑅 ) 𝑥 ) ( .r𝐽 ) 1 ) = ( 1 ( .r𝑅 ) 𝑥 ) ) )
27 26 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 1 ( .r𝑅 ) 𝑥 ) ( .r𝑅 ) 1 ) = ( 1 ( .r𝑅 ) 𝑥 ) ↔ ( ( 1 ( .r𝑅 ) 𝑥 ) ( .r𝐽 ) 1 ) = ( 1 ( .r𝑅 ) 𝑥 ) ) )
28 22 27 mpbird ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1 ( .r𝑅 ) 𝑥 ) ( .r𝑅 ) 1 ) = ( 1 ( .r𝑅 ) 𝑥 ) )
29 2 2idllidld ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
30 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
31 7 30 lidlss ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) )
32 3 7 ressbas2 ( 𝐼 ⊆ ( Base ‘ 𝑅 ) → 𝐼 = ( Base ‘ 𝐽 ) )
33 32 eqcomd ( 𝐼 ⊆ ( Base ‘ 𝑅 ) → ( Base ‘ 𝐽 ) = 𝐼 )
34 29 31 33 3syl ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 )
35 34 29 eqeltrd ( 𝜑 → ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) )
36 2 3 9 2idlbas ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 )
37 ringrng ( 𝐽 ∈ Ring → 𝐽 ∈ Rng )
38 4 37 syl ( 𝜑𝐽 ∈ Rng )
39 3 38 eqeltrrid ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
40 1 2 39 rng2idlsubrng ( 𝜑𝐼 ∈ ( SubRng ‘ 𝑅 ) )
41 36 40 eqeltrd ( 𝜑 → ( Base ‘ 𝐽 ) ∈ ( SubRng ‘ 𝑅 ) )
42 subrngsubg ( ( Base ‘ 𝐽 ) ∈ ( SubRng ‘ 𝑅 ) → ( Base ‘ 𝐽 ) ∈ ( SubGrp ‘ 𝑅 ) )
43 eqid ( 0g𝑅 ) = ( 0g𝑅 )
44 43 subg0cl ( ( Base ‘ 𝐽 ) ∈ ( SubGrp ‘ 𝑅 ) → ( 0g𝑅 ) ∈ ( Base ‘ 𝐽 ) )
45 41 42 44 3syl ( 𝜑 → ( 0g𝑅 ) ∈ ( Base ‘ 𝐽 ) )
46 1 35 45 3jca ( 𝜑 → ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 0g𝑅 ) ∈ ( Base ‘ 𝐽 ) ) )
47 11 anim1ci ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 1 ∈ ( Base ‘ 𝐽 ) ) )
48 43 7 16 30 rnglidlmcl ( ( ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 0g𝑅 ) ∈ ( Base ‘ 𝐽 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 1 ∈ ( Base ‘ 𝐽 ) ) ) → ( 𝑥 ( .r𝑅 ) 1 ) ∈ ( Base ‘ 𝐽 ) )
49 46 47 48 syl2an2r ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r𝑅 ) 1 ) ∈ ( Base ‘ 𝐽 ) )
50 9 19 5 20 49 ringlidmd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r𝐽 ) ( 𝑥 ( .r𝑅 ) 1 ) ) = ( 𝑥 ( .r𝑅 ) 1 ) )
51 24 oveqd ( 𝜑 → ( 1 ( .r𝑅 ) ( 𝑥 ( .r𝑅 ) 1 ) ) = ( 1 ( .r𝐽 ) ( 𝑥 ( .r𝑅 ) 1 ) ) )
52 51 eqeq1d ( 𝜑 → ( ( 1 ( .r𝑅 ) ( 𝑥 ( .r𝑅 ) 1 ) ) = ( 𝑥 ( .r𝑅 ) 1 ) ↔ ( 1 ( .r𝐽 ) ( 𝑥 ( .r𝑅 ) 1 ) ) = ( 𝑥 ( .r𝑅 ) 1 ) ) )
53 52 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1 ( .r𝑅 ) ( 𝑥 ( .r𝑅 ) 1 ) ) = ( 𝑥 ( .r𝑅 ) 1 ) ↔ ( 1 ( .r𝐽 ) ( 𝑥 ( .r𝑅 ) 1 ) ) = ( 𝑥 ( .r𝑅 ) 1 ) ) )
54 50 53 mpbird ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r𝑅 ) ( 𝑥 ( .r𝑅 ) 1 ) ) = ( 𝑥 ( .r𝑅 ) 1 ) )
55 18 28 54 3eqtr3d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r𝑅 ) 𝑥 ) = ( 𝑥 ( .r𝑅 ) 1 ) )
56 55 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 1 ( .r𝑅 ) 𝑥 ) = ( 𝑥 ( .r𝑅 ) 1 ) )
57 ssidd ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) )
58 6 7 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 )
59 6 16 mgpplusg ( .r𝑅 ) = ( +g𝑀 )
60 eqid ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 )
61 58 59 60 elcntz ( ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) → ( 1 ∈ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) ) ↔ ( 1 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 1 ( .r𝑅 ) 𝑥 ) = ( 𝑥 ( .r𝑅 ) 1 ) ) ) )
62 57 61 syl ( 𝜑 → ( 1 ∈ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) ) ↔ ( 1 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 1 ( .r𝑅 ) 𝑥 ) = ( 𝑥 ( .r𝑅 ) 1 ) ) ) )
63 12 56 62 mpbir2and ( 𝜑1 ∈ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) ) )
64 58 60 cntrval ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) ) = ( Cntr ‘ 𝑀 )
65 63 64 eleqtrdi ( 𝜑1 ∈ ( Cntr ‘ 𝑀 ) )