| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idl1cntr.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 2 |
|
rng2idl1cntr.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 3 |
|
rng2idl1cntr.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
| 4 |
|
rng2idl1cntr.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
| 5 |
|
rng2idl1cntr.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
| 6 |
|
rng2idl1cntr.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 8 |
3 7
|
ressbasss |
⊢ ( Base ‘ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
| 10 |
9 5
|
ringidcl |
⊢ ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝐽 ) ) |
| 12 |
8 11
|
sselid |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Rng ) |
| 14 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 16 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 17 |
7 16
|
rngass |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 1 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 1 ) = ( 1 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) ) |
| 18 |
13 14 15 14 17
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 1 ) = ( 1 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) ) |
| 19 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
| 20 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐽 ∈ Ring ) |
| 21 |
1 2 3 4 7 16 5
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝐽 ) ) |
| 22 |
9 19 5 20 21
|
ringridmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝐽 ) 1 ) = ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 23 |
3 16
|
ressmulr |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐽 ) ) |
| 24 |
2 23
|
syl |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐽 ) ) |
| 25 |
24
|
oveqd |
⊢ ( 𝜑 → ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 1 ) = ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝐽 ) 1 ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 1 ) = ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ↔ ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝐽 ) 1 ) = ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 1 ) = ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ↔ ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝐽 ) 1 ) = ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 28 |
22 27
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 1 ) = ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 29 |
2
|
2idllidld |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 30 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 31 |
7 30
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
| 32 |
3 7
|
ressbas2 |
⊢ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) → 𝐼 = ( Base ‘ 𝐽 ) ) |
| 33 |
32
|
eqcomd |
⊢ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) → ( Base ‘ 𝐽 ) = 𝐼 ) |
| 34 |
29 31 33
|
3syl |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 ) |
| 35 |
34 29
|
eqeltrd |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 36 |
2 3 9
|
2idlbas |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 ) |
| 37 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
| 38 |
4 37
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
| 39 |
3 38
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
| 40 |
1 2 39
|
rng2idlsubrng |
⊢ ( 𝜑 → 𝐼 ∈ ( SubRng ‘ 𝑅 ) ) |
| 41 |
36 40
|
eqeltrd |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) ∈ ( SubRng ‘ 𝑅 ) ) |
| 42 |
|
subrngsubg |
⊢ ( ( Base ‘ 𝐽 ) ∈ ( SubRng ‘ 𝑅 ) → ( Base ‘ 𝐽 ) ∈ ( SubGrp ‘ 𝑅 ) ) |
| 43 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 44 |
43
|
subg0cl |
⊢ ( ( Base ‘ 𝐽 ) ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝐽 ) ) |
| 45 |
41 42 44
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝐽 ) ) |
| 46 |
1 35 45
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝐽 ) ) ) |
| 47 |
11
|
anim1ci |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 1 ∈ ( Base ‘ 𝐽 ) ) ) |
| 48 |
43 7 16 30
|
rnglidlmcl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝐽 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 1 ∈ ( Base ‘ 𝐽 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ∈ ( Base ‘ 𝐽 ) ) |
| 49 |
46 47 48
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ∈ ( Base ‘ 𝐽 ) ) |
| 50 |
9 19 5 20 49
|
ringlidmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝐽 ) ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) |
| 51 |
24
|
oveqd |
⊢ ( 𝜑 → ( 1 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) = ( 1 ( .r ‘ 𝐽 ) ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) ) |
| 52 |
51
|
eqeq1d |
⊢ ( 𝜑 → ( ( 1 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ↔ ( 1 ( .r ‘ 𝐽 ) ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ↔ ( 1 ( .r ‘ 𝐽 ) ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) ) |
| 54 |
50 53
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) |
| 55 |
18 28 54
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) |
| 56 |
55
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) |
| 57 |
|
ssidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 58 |
6 7
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 59 |
6 16
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 60 |
|
eqid |
⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) |
| 61 |
58 59 60
|
elcntz |
⊢ ( ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) → ( 1 ∈ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) ) ↔ ( 1 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) ) ) |
| 62 |
57 61
|
syl |
⊢ ( 𝜑 → ( 1 ∈ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) ) ↔ ( 1 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) ) ) |
| 63 |
12 56 62
|
mpbir2and |
⊢ ( 𝜑 → 1 ∈ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) ) ) |
| 64 |
58 60
|
cntrval |
⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑅 ) ) = ( Cntr ‘ 𝑀 ) |
| 65 |
63 64
|
eleqtrdi |
⊢ ( 𝜑 → 1 ∈ ( Cntr ‘ 𝑀 ) ) |