Description: In a unital ring, the quotient of the ring and a two-sided ideal is unital. (Contributed by AV, 20-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngringbd.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
| rngringbd.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | ||
| rngringbd.j | ⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) | ||
| rngringbd.u | ⊢ ( 𝜑 → 𝐽 ∈ Ring ) | ||
| rngringbd.q | ⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) | ||
| Assertion | rngringbdlem1 | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rngringbd.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
| 2 | rngringbd.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | |
| 3 | rngringbd.j | ⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) | |
| 4 | rngringbd.u | ⊢ ( 𝜑 → 𝐽 ∈ Ring ) | |
| 5 | rngringbd.q | ⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) | |
| 6 | 2 | anim1ci | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ Ring ) → ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) ) | 
| 7 | eqid | ⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) | |
| 8 | 5 7 | qusring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) | 
| 9 | 6 8 | syl | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |