Description: In a unital ring, the quotient of the ring and a two-sided ideal is unital. (Contributed by AV, 20-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngringbd.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
rngringbd.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | ||
rngringbd.j | ⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) | ||
rngringbd.u | ⊢ ( 𝜑 → 𝐽 ∈ Ring ) | ||
rngringbd.q | ⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) | ||
Assertion | rngringbdlem1 | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngringbd.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
2 | rngringbd.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | |
3 | rngringbd.j | ⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) | |
4 | rngringbd.u | ⊢ ( 𝜑 → 𝐽 ∈ Ring ) | |
5 | rngringbd.q | ⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) | |
6 | 2 | anim1ci | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ Ring ) → ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) ) |
7 | eqid | ⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) | |
8 | 5 7 | qusring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
9 | 6 8 | syl | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |