Metamath Proof Explorer


Theorem rngringbdlem1

Description: In a unital ring, the quotient of the ring and a two-sided ideal is unital. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses rngringbd.r ( 𝜑𝑅 ∈ Rng )
rngringbd.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rngringbd.j 𝐽 = ( 𝑅s 𝐼 )
rngringbd.u ( 𝜑𝐽 ∈ Ring )
rngringbd.q 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
Assertion rngringbdlem1 ( ( 𝜑𝑅 ∈ Ring ) → 𝑄 ∈ Ring )

Proof

Step Hyp Ref Expression
1 rngringbd.r ( 𝜑𝑅 ∈ Rng )
2 rngringbd.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rngringbd.j 𝐽 = ( 𝑅s 𝐼 )
4 rngringbd.u ( 𝜑𝐽 ∈ Ring )
5 rngringbd.q 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
6 2 anim1ci ( ( 𝜑𝑅 ∈ Ring ) → ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) )
7 eqid ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 )
8 5 7 qusring ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑄 ∈ Ring )
9 6 8 syl ( ( 𝜑𝑅 ∈ Ring ) → 𝑄 ∈ Ring )