Step |
Hyp |
Ref |
Expression |
1 |
|
rngringbd.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rngringbd.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rngringbd.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rngringbd.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rngringbd.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
6 |
|
eqid |
⊢ ( 𝑄 ×s 𝐽 ) = ( 𝑄 ×s 𝐽 ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → 𝑄 ∈ Ring ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → 𝐽 ∈ Ring ) |
9 |
6 7 8
|
xpsringd |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → ( 𝑄 ×s 𝐽 ) ∈ Ring ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → 𝑅 ∈ Rng ) |
11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( 1r ‘ 𝐽 ) = ( 1r ‘ 𝐽 ) |
15 |
|
eqid |
⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) ⟩ ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) ⟩ ) |
18 |
10 11 3 8 12 13 14 15 5 16 6 17
|
rngqiprngim |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) ⟩ ) ∈ ( 𝑅 RngIsom ( 𝑄 ×s 𝐽 ) ) ) |
19 |
|
rngimcnv |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) ⟩ ) ∈ ( 𝑅 RngIsom ( 𝑄 ×s 𝐽 ) ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) ⟩ ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIsom 𝑅 ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) ⟩ ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIsom 𝑅 ) ) |
21 |
|
rngisomring |
⊢ ( ( ( 𝑄 ×s 𝐽 ) ∈ Ring ∧ 𝑅 ∈ Rng ∧ ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) ⟩ ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIsom 𝑅 ) ) → 𝑅 ∈ Ring ) |
22 |
9 10 20 21
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → 𝑅 ∈ Ring ) |