Metamath Proof Explorer


Theorem rngringbdlem2

Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 14-Feb-2025)

Ref Expression
Hypotheses rngringbd.r ( 𝜑𝑅 ∈ Rng )
rngringbd.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rngringbd.j 𝐽 = ( 𝑅s 𝐼 )
rngringbd.u ( 𝜑𝐽 ∈ Ring )
rngringbd.q 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
Assertion rngringbdlem2 ( ( 𝜑𝑄 ∈ Ring ) → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 rngringbd.r ( 𝜑𝑅 ∈ Rng )
2 rngringbd.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rngringbd.j 𝐽 = ( 𝑅s 𝐼 )
4 rngringbd.u ( 𝜑𝐽 ∈ Ring )
5 rngringbd.q 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
6 eqid ( 𝑄 ×s 𝐽 ) = ( 𝑄 ×s 𝐽 )
7 simpr ( ( 𝜑𝑄 ∈ Ring ) → 𝑄 ∈ Ring )
8 4 adantr ( ( 𝜑𝑄 ∈ Ring ) → 𝐽 ∈ Ring )
9 6 7 8 xpsringd ( ( 𝜑𝑄 ∈ Ring ) → ( 𝑄 ×s 𝐽 ) ∈ Ring )
10 1 adantr ( ( 𝜑𝑄 ∈ Ring ) → 𝑅 ∈ Rng )
11 2 adantr ( ( 𝜑𝑄 ∈ Ring ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
12 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
13 eqid ( .r𝑅 ) = ( .r𝑅 )
14 eqid ( 1r𝐽 ) = ( 1r𝐽 )
15 eqid ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 )
16 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
17 eqid ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r𝐽 ) ( .r𝑅 ) 𝑥 ) ⟩ ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r𝐽 ) ( .r𝑅 ) 𝑥 ) ⟩ )
18 10 11 3 8 12 13 14 15 5 16 6 17 rngqiprngim ( ( 𝜑𝑄 ∈ Ring ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r𝐽 ) ( .r𝑅 ) 𝑥 ) ⟩ ) ∈ ( 𝑅 RngIsom ( 𝑄 ×s 𝐽 ) ) )
19 rngimcnv ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r𝐽 ) ( .r𝑅 ) 𝑥 ) ⟩ ) ∈ ( 𝑅 RngIsom ( 𝑄 ×s 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r𝐽 ) ( .r𝑅 ) 𝑥 ) ⟩ ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIsom 𝑅 ) )
20 18 19 syl ( ( 𝜑𝑄 ∈ Ring ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r𝐽 ) ( .r𝑅 ) 𝑥 ) ⟩ ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIsom 𝑅 ) )
21 rngisomring ( ( ( 𝑄 ×s 𝐽 ) ∈ Ring ∧ 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ⟨ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r𝐽 ) ( .r𝑅 ) 𝑥 ) ⟩ ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIsom 𝑅 ) ) → 𝑅 ∈ Ring )
22 9 10 20 21 syl3anc ( ( 𝜑𝑄 ∈ Ring ) → 𝑅 ∈ Ring )