| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngringbd.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 2 |
|
rngringbd.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 3 |
|
rngringbd.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
| 4 |
|
rngringbd.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
| 5 |
|
rngringbd.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 6 |
|
eqid |
⊢ ( 𝑄 ×s 𝐽 ) = ( 𝑄 ×s 𝐽 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → 𝑄 ∈ Ring ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → 𝐽 ∈ Ring ) |
| 9 |
6 7 8
|
xpsringd |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → ( 𝑄 ×s 𝐽 ) ∈ Ring ) |
| 10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → 𝑅 ∈ Rng ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 14 |
|
eqid |
⊢ ( 1r ‘ 𝐽 ) = ( 1r ‘ 𝐽 ) |
| 15 |
|
eqid |
⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 17 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ 〈 [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) 〉 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ 〈 [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) 〉 ) |
| 18 |
10 11 3 8 12 13 14 15 5 16 6 17
|
rngqiprngim |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ 〈 [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) 〉 ) ∈ ( 𝑅 RngIso ( 𝑄 ×s 𝐽 ) ) ) |
| 19 |
|
rngimcnv |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ 〈 [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) 〉 ) ∈ ( 𝑅 RngIso ( 𝑄 ×s 𝐽 ) ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ 〈 [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) 〉 ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIso 𝑅 ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ 〈 [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) 〉 ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIso 𝑅 ) ) |
| 21 |
|
rngisomring |
⊢ ( ( ( 𝑄 ×s 𝐽 ) ∈ Ring ∧ 𝑅 ∈ Rng ∧ ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ 〈 [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) , ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝑥 ) 〉 ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIso 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 22 |
9 10 20 21
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ Ring ) → 𝑅 ∈ Ring ) |