Metamath Proof Explorer


Theorem rngimcnv

Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025)

Ref Expression
Assertion rngimcnv ( 𝐹 ∈ ( 𝑆 RngIsom 𝑇 ) → 𝐹 ∈ ( 𝑇 RngIsom 𝑆 ) )

Proof

Step Hyp Ref Expression
1 rngimrcl ( 𝐹 ∈ ( 𝑆 RngIsom 𝑇 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) )
2 isrngisom ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝐹 ∈ ( 𝑆 RngIsom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) ∧ 𝐹 ∈ ( 𝑇 RngHomo 𝑆 ) ) ) )
3 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
4 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
5 3 4 rnghmf ( 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) )
6 frel ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) → Rel 𝐹 )
7 dfrel2 ( Rel 𝐹 𝐹 = 𝐹 )
8 6 7 sylib ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) → 𝐹 = 𝐹 )
9 5 8 syl ( 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) → 𝐹 = 𝐹 )
10 id ( 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) → 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) )
11 9 10 eqeltrd ( 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) → 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) )
12 11 anim1ci ( ( 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) ∧ 𝐹 ∈ ( 𝑇 RngHomo 𝑆 ) ) → ( 𝐹 ∈ ( 𝑇 RngHomo 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) ) )
13 isrngisom ( ( 𝑇 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐹 ∈ ( 𝑇 RngIsom 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑇 RngHomo 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) ) ) )
14 13 ancoms ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝐹 ∈ ( 𝑇 RngIsom 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑇 RngHomo 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) ) ) )
15 12 14 imbitrrid ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝐹 ∈ ( 𝑆 RngHomo 𝑇 ) ∧ 𝐹 ∈ ( 𝑇 RngHomo 𝑆 ) ) → 𝐹 ∈ ( 𝑇 RngIsom 𝑆 ) ) )
16 2 15 sylbid ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝐹 ∈ ( 𝑆 RngIsom 𝑇 ) → 𝐹 ∈ ( 𝑇 RngIsom 𝑆 ) ) )
17 1 16 mpcom ( 𝐹 ∈ ( 𝑆 RngIsom 𝑇 ) → 𝐹 ∈ ( 𝑇 RngIsom 𝑆 ) )