Metamath Proof Explorer


Theorem rngringbdlem2

Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 14-Feb-2025)

Ref Expression
Hypotheses rngringbd.r φ R Rng
rngringbd.i φ I 2Ideal R
rngringbd.j J = R 𝑠 I
rngringbd.u φ J Ring
rngringbd.q Q = R / 𝑠 R ~ QG I
Assertion rngringbdlem2 φ Q Ring R Ring

Proof

Step Hyp Ref Expression
1 rngringbd.r φ R Rng
2 rngringbd.i φ I 2Ideal R
3 rngringbd.j J = R 𝑠 I
4 rngringbd.u φ J Ring
5 rngringbd.q Q = R / 𝑠 R ~ QG I
6 eqid Q × 𝑠 J = Q × 𝑠 J
7 simpr φ Q Ring Q Ring
8 4 adantr φ Q Ring J Ring
9 6 7 8 xpsringd φ Q Ring Q × 𝑠 J Ring
10 1 adantr φ Q Ring R Rng
11 2 adantr φ Q Ring I 2Ideal R
12 eqid Base R = Base R
13 eqid R = R
14 eqid 1 J = 1 J
15 eqid R ~ QG I = R ~ QG I
16 eqid Base Q = Base Q
17 eqid x Base R x R ~ QG I 1 J R x = x Base R x R ~ QG I 1 J R x
18 10 11 3 8 12 13 14 15 5 16 6 17 rngqiprngim φ Q Ring x Base R x R ~ QG I 1 J R x R RngIso Q × 𝑠 J
19 rngimcnv x Base R x R ~ QG I 1 J R x R RngIso Q × 𝑠 J x Base R x R ~ QG I 1 J R x -1 Q × 𝑠 J RngIso R
20 18 19 syl φ Q Ring x Base R x R ~ QG I 1 J R x -1 Q × 𝑠 J RngIso R
21 rngisomring Q × 𝑠 J Ring R Rng x Base R x R ~ QG I 1 J R x -1 Q × 𝑠 J RngIso R R Ring
22 9 10 20 21 syl3anc φ Q Ring R Ring