Description: A product of two rings is a ring ( xpsmnd analog). (Contributed by AV, 28-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpsringd.y | |
|
xpsringd.s | |
||
xpsringd.r | |
||
Assertion | xpsringd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsringd.y | |
|
2 | xpsringd.s | |
|
3 | xpsringd.r | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 1 4 5 2 3 6 7 8 | xpsval | |
10 | 6 | xpsff1o2 | |
11 | 1 4 5 2 3 6 7 8 | xpsrnbas | |
12 | 11 | f1oeq3d | |
13 | 10 12 | mpbii | |
14 | f1ocnv | |
|
15 | f1of1 | |
|
16 | 13 14 15 | 3syl | |
17 | 2on | |
|
18 | 17 | a1i | |
19 | fvexd | |
|
20 | xpscf | |
|
21 | 2 3 20 | sylanbrc | |
22 | 8 18 19 21 | prdsringd | |
23 | eqid | |
|
24 | eqid | |
|
25 | 23 24 | imasringf1 | |
26 | 16 22 25 | syl2anc | |
27 | 9 26 | eqeltrd | |