| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngringbd.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rngringbd.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rngringbd.j |
|- J = ( R |`s I ) |
| 4 |
|
rngringbd.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rngringbd.q |
|- Q = ( R /s ( R ~QG I ) ) |
| 6 |
|
eqid |
|- ( Q Xs. J ) = ( Q Xs. J ) |
| 7 |
|
simpr |
|- ( ( ph /\ Q e. Ring ) -> Q e. Ring ) |
| 8 |
4
|
adantr |
|- ( ( ph /\ Q e. Ring ) -> J e. Ring ) |
| 9 |
6 7 8
|
xpsringd |
|- ( ( ph /\ Q e. Ring ) -> ( Q Xs. J ) e. Ring ) |
| 10 |
1
|
adantr |
|- ( ( ph /\ Q e. Ring ) -> R e. Rng ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ Q e. Ring ) -> I e. ( 2Ideal ` R ) ) |
| 12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 13 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 14 |
|
eqid |
|- ( 1r ` J ) = ( 1r ` J ) |
| 15 |
|
eqid |
|- ( R ~QG I ) = ( R ~QG I ) |
| 16 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 17 |
|
eqid |
|- ( x e. ( Base ` R ) |-> <. [ x ] ( R ~QG I ) , ( ( 1r ` J ) ( .r ` R ) x ) >. ) = ( x e. ( Base ` R ) |-> <. [ x ] ( R ~QG I ) , ( ( 1r ` J ) ( .r ` R ) x ) >. ) |
| 18 |
10 11 3 8 12 13 14 15 5 16 6 17
|
rngqiprngim |
|- ( ( ph /\ Q e. Ring ) -> ( x e. ( Base ` R ) |-> <. [ x ] ( R ~QG I ) , ( ( 1r ` J ) ( .r ` R ) x ) >. ) e. ( R RngIso ( Q Xs. J ) ) ) |
| 19 |
|
rngimcnv |
|- ( ( x e. ( Base ` R ) |-> <. [ x ] ( R ~QG I ) , ( ( 1r ` J ) ( .r ` R ) x ) >. ) e. ( R RngIso ( Q Xs. J ) ) -> `' ( x e. ( Base ` R ) |-> <. [ x ] ( R ~QG I ) , ( ( 1r ` J ) ( .r ` R ) x ) >. ) e. ( ( Q Xs. J ) RngIso R ) ) |
| 20 |
18 19
|
syl |
|- ( ( ph /\ Q e. Ring ) -> `' ( x e. ( Base ` R ) |-> <. [ x ] ( R ~QG I ) , ( ( 1r ` J ) ( .r ` R ) x ) >. ) e. ( ( Q Xs. J ) RngIso R ) ) |
| 21 |
|
rngisomring |
|- ( ( ( Q Xs. J ) e. Ring /\ R e. Rng /\ `' ( x e. ( Base ` R ) |-> <. [ x ] ( R ~QG I ) , ( ( 1r ` J ) ( .r ` R ) x ) >. ) e. ( ( Q Xs. J ) RngIso R ) ) -> R e. Ring ) |
| 22 |
9 10 20 21
|
syl3anc |
|- ( ( ph /\ Q e. Ring ) -> R e. Ring ) |