Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
12 |
|
rngqiprngim.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngho |
|- ( ph -> F e. ( R RngHom P ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimf1 |
|- ( ph -> F : B -1-1-> ( C X. I ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfo |
|- ( ph -> F : B -onto-> ( C X. I ) ) |
16 |
|
df-f1o |
|- ( F : B -1-1-onto-> ( C X. I ) <-> ( F : B -1-1-> ( C X. I ) /\ F : B -onto-> ( C X. I ) ) ) |
17 |
14 15 16
|
sylanbrc |
|- ( ph -> F : B -1-1-onto-> ( C X. I ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqipbas |
|- ( ph -> ( Base ` P ) = ( C X. I ) ) |
19 |
18
|
f1oeq3d |
|- ( ph -> ( F : B -1-1-onto-> ( Base ` P ) <-> F : B -1-1-onto-> ( C X. I ) ) ) |
20 |
17 19
|
mpbird |
|- ( ph -> F : B -1-1-onto-> ( Base ` P ) ) |
21 |
11
|
ovexi |
|- P e. _V |
22 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
23 |
5 22
|
isrngim2 |
|- ( ( R e. Rng /\ P e. _V ) -> ( F e. ( R RngIso P ) <-> ( F e. ( R RngHom P ) /\ F : B -1-1-onto-> ( Base ` P ) ) ) ) |
24 |
1 21 23
|
sylancl |
|- ( ph -> ( F e. ( R RngIso P ) <-> ( F e. ( R RngHom P ) /\ F : B -1-1-onto-> ( Base ` P ) ) ) ) |
25 |
13 20 24
|
mpbir2and |
|- ( ph -> F e. ( R RngIso P ) ) |