Metamath Proof Explorer


Theorem rngqiprngim

Description: F is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r
|- ( ph -> R e. Rng )
rng2idlring.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlring.j
|- J = ( R |`s I )
rng2idlring.u
|- ( ph -> J e. Ring )
rng2idlring.b
|- B = ( Base ` R )
rng2idlring.t
|- .x. = ( .r ` R )
rng2idlring.1
|- .1. = ( 1r ` J )
rngqiprngim.g
|- .~ = ( R ~QG I )
rngqiprngim.q
|- Q = ( R /s .~ )
rngqiprngim.c
|- C = ( Base ` Q )
rngqiprngim.p
|- P = ( Q Xs. J )
rngqiprngim.f
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. )
Assertion rngqiprngim
|- ( ph -> F e. ( R RngIso P ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r
 |-  ( ph -> R e. Rng )
2 rng2idlring.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlring.j
 |-  J = ( R |`s I )
4 rng2idlring.u
 |-  ( ph -> J e. Ring )
5 rng2idlring.b
 |-  B = ( Base ` R )
6 rng2idlring.t
 |-  .x. = ( .r ` R )
7 rng2idlring.1
 |-  .1. = ( 1r ` J )
8 rngqiprngim.g
 |-  .~ = ( R ~QG I )
9 rngqiprngim.q
 |-  Q = ( R /s .~ )
10 rngqiprngim.c
 |-  C = ( Base ` Q )
11 rngqiprngim.p
 |-  P = ( Q Xs. J )
12 rngqiprngim.f
 |-  F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. )
13 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngho
 |-  ( ph -> F e. ( R RngHom P ) )
14 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimf1
 |-  ( ph -> F : B -1-1-> ( C X. I ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfo
 |-  ( ph -> F : B -onto-> ( C X. I ) )
16 df-f1o
 |-  ( F : B -1-1-onto-> ( C X. I ) <-> ( F : B -1-1-> ( C X. I ) /\ F : B -onto-> ( C X. I ) ) )
17 14 15 16 sylanbrc
 |-  ( ph -> F : B -1-1-onto-> ( C X. I ) )
18 1 2 3 4 5 6 7 8 9 10 11 rngqipbas
 |-  ( ph -> ( Base ` P ) = ( C X. I ) )
19 18 f1oeq3d
 |-  ( ph -> ( F : B -1-1-onto-> ( Base ` P ) <-> F : B -1-1-onto-> ( C X. I ) ) )
20 17 19 mpbird
 |-  ( ph -> F : B -1-1-onto-> ( Base ` P ) )
21 11 ovexi
 |-  P e. _V
22 eqid
 |-  ( Base ` P ) = ( Base ` P )
23 5 22 isrngim2
 |-  ( ( R e. Rng /\ P e. _V ) -> ( F e. ( R RngIso P ) <-> ( F e. ( R RngHom P ) /\ F : B -1-1-onto-> ( Base ` P ) ) ) )
24 1 21 23 sylancl
 |-  ( ph -> ( F e. ( R RngIso P ) <-> ( F e. ( R RngHom P ) /\ F : B -1-1-onto-> ( Base ` P ) ) ) )
25 13 20 24 mpbir2and
 |-  ( ph -> F e. ( R RngIso P ) )