Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
12 |
|
rngqiprngim.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimf |
|- ( ph -> F : B --> ( C X. I ) ) |
14 |
|
elxpi |
|- ( b e. ( C X. I ) -> E. p E. q ( b = <. p , q >. /\ ( p e. C /\ q e. I ) ) ) |
15 |
10
|
eleq2i |
|- ( p e. C <-> p e. ( Base ` Q ) ) |
16 |
|
vex |
|- p e. _V |
17 |
8 9 5
|
quselbas |
|- ( ( R e. Rng /\ p e. _V ) -> ( p e. ( Base ` Q ) <-> E. c e. B p = [ c ] .~ ) ) |
18 |
1 16 17
|
sylancl |
|- ( ph -> ( p e. ( Base ` Q ) <-> E. c e. B p = [ c ] .~ ) ) |
19 |
15 18
|
bitrid |
|- ( ph -> ( p e. C <-> E. c e. B p = [ c ] .~ ) ) |
20 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
21 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
22 |
1 21
|
syl |
|- ( ph -> R e. Grp ) |
23 |
22
|
ad2antrr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> R e. Grp ) |
24 |
|
simpr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> c e. B ) |
25 |
1
|
ad2antrr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> R e. Rng ) |
26 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|- ( ph -> .1. e. B ) |
27 |
26
|
ad2antrr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> .1. e. B ) |
28 |
5 6
|
rngcl |
|- ( ( R e. Rng /\ .1. e. B /\ c e. B ) -> ( .1. .x. c ) e. B ) |
29 |
25 27 24 28
|
syl3anc |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( .1. .x. c ) e. B ) |
30 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
31 |
5 30
|
grpsubcl |
|- ( ( R e. Grp /\ c e. B /\ ( .1. .x. c ) e. B ) -> ( c ( -g ` R ) ( .1. .x. c ) ) e. B ) |
32 |
23 24 29 31
|
syl3anc |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( c ( -g ` R ) ( .1. .x. c ) ) e. B ) |
33 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
34 |
5 33
|
2idlss |
|- ( I e. ( 2Ideal ` R ) -> I C_ B ) |
35 |
2 34
|
syl |
|- ( ph -> I C_ B ) |
36 |
35
|
sselda |
|- ( ( ph /\ q e. I ) -> q e. B ) |
37 |
36
|
adantr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> q e. B ) |
38 |
5 20 23 32 37
|
grpcld |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) e. B ) |
39 |
38
|
adantr |
|- ( ( ( ( ph /\ q e. I ) /\ c e. B ) /\ p = [ c ] .~ ) -> ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) e. B ) |
40 |
|
opeq1 |
|- ( p = [ c ] .~ -> <. p , q >. = <. [ c ] .~ , q >. ) |
41 |
40
|
adantl |
|- ( ( ( ( ph /\ q e. I ) /\ c e. B ) /\ p = [ c ] .~ ) -> <. p , q >. = <. [ c ] .~ , q >. ) |
42 |
|
eceq1 |
|- ( a = ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) -> [ a ] .~ = [ ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ] .~ ) |
43 |
|
oveq2 |
|- ( a = ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) -> ( .1. .x. a ) = ( .1. .x. ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ) ) |
44 |
42 43
|
opeq12d |
|- ( a = ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) -> <. [ a ] .~ , ( .1. .x. a ) >. = <. [ ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ] .~ , ( .1. .x. ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ) >. ) |
45 |
41 44
|
eqeqan12d |
|- ( ( ( ( ( ph /\ q e. I ) /\ c e. B ) /\ p = [ c ] .~ ) /\ a = ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ) -> ( <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. <-> <. [ c ] .~ , q >. = <. [ ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ] .~ , ( .1. .x. ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ) >. ) ) |
46 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
47 |
1 46
|
syl |
|- ( ph -> R e. Abel ) |
48 |
47
|
ad2antrr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> R e. Abel ) |
49 |
5 20 30
|
ablsubaddsub |
|- ( ( R e. Abel /\ ( c e. B /\ ( .1. .x. c ) e. B /\ q e. B ) ) -> ( ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ( -g ` R ) c ) = ( q ( -g ` R ) ( .1. .x. c ) ) ) |
50 |
48 24 29 37 49
|
syl13anc |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ( -g ` R ) c ) = ( q ( -g ` R ) ( .1. .x. c ) ) ) |
51 |
4
|
ringgrpd |
|- ( ph -> J e. Grp ) |
52 |
51
|
ad2antrr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> J e. Grp ) |
53 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
54 |
2 3 53
|
2idlbas |
|- ( ph -> ( Base ` J ) = I ) |
55 |
54
|
eqcomd |
|- ( ph -> I = ( Base ` J ) ) |
56 |
55
|
eleq2d |
|- ( ph -> ( q e. I <-> q e. ( Base ` J ) ) ) |
57 |
56
|
biimpa |
|- ( ( ph /\ q e. I ) -> q e. ( Base ` J ) ) |
58 |
57
|
adantr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> q e. ( Base ` J ) ) |
59 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|- ( ( ph /\ c e. B ) -> ( .1. .x. c ) e. ( Base ` J ) ) |
60 |
59
|
adantlr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( .1. .x. c ) e. ( Base ` J ) ) |
61 |
|
eqid |
|- ( -g ` J ) = ( -g ` J ) |
62 |
53 61
|
grpsubcl |
|- ( ( J e. Grp /\ q e. ( Base ` J ) /\ ( .1. .x. c ) e. ( Base ` J ) ) -> ( q ( -g ` J ) ( .1. .x. c ) ) e. ( Base ` J ) ) |
63 |
52 58 60 62
|
syl3anc |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( q ( -g ` J ) ( .1. .x. c ) ) e. ( Base ` J ) ) |
64 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
65 |
4 64
|
syl |
|- ( ph -> J e. Rng ) |
66 |
3 65
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
67 |
1 2 66
|
rng2idlnsg |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
68 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
69 |
67 68
|
syl |
|- ( ph -> I e. ( SubGrp ` R ) ) |
70 |
69
|
ad2antrr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> I e. ( SubGrp ` R ) ) |
71 |
|
simplr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> q e. I ) |
72 |
54
|
ad2antrr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( Base ` J ) = I ) |
73 |
60 72
|
eleqtrd |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( .1. .x. c ) e. I ) |
74 |
30 3 61
|
subgsub |
|- ( ( I e. ( SubGrp ` R ) /\ q e. I /\ ( .1. .x. c ) e. I ) -> ( q ( -g ` R ) ( .1. .x. c ) ) = ( q ( -g ` J ) ( .1. .x. c ) ) ) |
75 |
70 71 73 74
|
syl3anc |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( q ( -g ` R ) ( .1. .x. c ) ) = ( q ( -g ` J ) ( .1. .x. c ) ) ) |
76 |
55
|
ad2antrr |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> I = ( Base ` J ) ) |
77 |
63 75 76
|
3eltr4d |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( q ( -g ` R ) ( .1. .x. c ) ) e. I ) |
78 |
50 77
|
eqeltrd |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ( -g ` R ) c ) e. I ) |
79 |
5 30 8
|
qusecsub |
|- ( ( ( R e. Abel /\ I e. ( SubGrp ` R ) ) /\ ( c e. B /\ ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) e. B ) ) -> ( [ c ] .~ = [ ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ] .~ <-> ( ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ( -g ` R ) c ) e. I ) ) |
80 |
48 70 24 38 79
|
syl22anc |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( [ c ] .~ = [ ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ] .~ <-> ( ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ( -g ` R ) c ) e. I ) ) |
81 |
78 80
|
mpbird |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> [ c ] .~ = [ ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ] .~ ) |
82 |
1 2 3 4 5 6 7
|
rngqiprngimfolem |
|- ( ( ph /\ q e. I /\ c e. B ) -> ( .1. .x. ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ) = q ) |
83 |
82
|
3expa |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> ( .1. .x. ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ) = q ) |
84 |
83
|
eqcomd |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> q = ( .1. .x. ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ) ) |
85 |
81 84
|
opeq12d |
|- ( ( ( ph /\ q e. I ) /\ c e. B ) -> <. [ c ] .~ , q >. = <. [ ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ] .~ , ( .1. .x. ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ) >. ) |
86 |
85
|
adantr |
|- ( ( ( ( ph /\ q e. I ) /\ c e. B ) /\ p = [ c ] .~ ) -> <. [ c ] .~ , q >. = <. [ ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ] .~ , ( .1. .x. ( ( c ( -g ` R ) ( .1. .x. c ) ) ( +g ` R ) q ) ) >. ) |
87 |
39 45 86
|
rspcedvd |
|- ( ( ( ( ph /\ q e. I ) /\ c e. B ) /\ p = [ c ] .~ ) -> E. a e. B <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) |
88 |
87
|
rexlimdva2 |
|- ( ( ph /\ q e. I ) -> ( E. c e. B p = [ c ] .~ -> E. a e. B <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) ) |
89 |
88
|
ex |
|- ( ph -> ( q e. I -> ( E. c e. B p = [ c ] .~ -> E. a e. B <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) ) ) |
90 |
89
|
com23 |
|- ( ph -> ( E. c e. B p = [ c ] .~ -> ( q e. I -> E. a e. B <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) ) ) |
91 |
19 90
|
sylbid |
|- ( ph -> ( p e. C -> ( q e. I -> E. a e. B <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) ) ) |
92 |
91
|
impd |
|- ( ph -> ( ( p e. C /\ q e. I ) -> E. a e. B <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) ) |
93 |
92
|
com12 |
|- ( ( p e. C /\ q e. I ) -> ( ph -> E. a e. B <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) ) |
94 |
93
|
adantl |
|- ( ( b = <. p , q >. /\ ( p e. C /\ q e. I ) ) -> ( ph -> E. a e. B <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) ) |
95 |
94
|
imp |
|- ( ( ( b = <. p , q >. /\ ( p e. C /\ q e. I ) ) /\ ph ) -> E. a e. B <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) |
96 |
|
simplll |
|- ( ( ( ( b = <. p , q >. /\ ( p e. C /\ q e. I ) ) /\ ph ) /\ a e. B ) -> b = <. p , q >. ) |
97 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|- ( ( ph /\ a e. B ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) |
98 |
97
|
adantll |
|- ( ( ( ( b = <. p , q >. /\ ( p e. C /\ q e. I ) ) /\ ph ) /\ a e. B ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) |
99 |
96 98
|
eqeq12d |
|- ( ( ( ( b = <. p , q >. /\ ( p e. C /\ q e. I ) ) /\ ph ) /\ a e. B ) -> ( b = ( F ` a ) <-> <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) ) |
100 |
99
|
rexbidva |
|- ( ( ( b = <. p , q >. /\ ( p e. C /\ q e. I ) ) /\ ph ) -> ( E. a e. B b = ( F ` a ) <-> E. a e. B <. p , q >. = <. [ a ] .~ , ( .1. .x. a ) >. ) ) |
101 |
95 100
|
mpbird |
|- ( ( ( b = <. p , q >. /\ ( p e. C /\ q e. I ) ) /\ ph ) -> E. a e. B b = ( F ` a ) ) |
102 |
101
|
ex |
|- ( ( b = <. p , q >. /\ ( p e. C /\ q e. I ) ) -> ( ph -> E. a e. B b = ( F ` a ) ) ) |
103 |
102
|
exlimivv |
|- ( E. p E. q ( b = <. p , q >. /\ ( p e. C /\ q e. I ) ) -> ( ph -> E. a e. B b = ( F ` a ) ) ) |
104 |
14 103
|
syl |
|- ( b e. ( C X. I ) -> ( ph -> E. a e. B b = ( F ` a ) ) ) |
105 |
104
|
impcom |
|- ( ( ph /\ b e. ( C X. I ) ) -> E. a e. B b = ( F ` a ) ) |
106 |
105
|
ralrimiva |
|- ( ph -> A. b e. ( C X. I ) E. a e. B b = ( F ` a ) ) |
107 |
|
dffo3 |
|- ( F : B -onto-> ( C X. I ) <-> ( F : B --> ( C X. I ) /\ A. b e. ( C X. I ) E. a e. B b = ( F ` a ) ) ) |
108 |
13 106 107
|
sylanbrc |
|- ( ph -> F : B -onto-> ( C X. I ) ) |