| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r |  |-  ( ph -> R e. Rng ) | 
						
							| 2 |  | rng2idlring.i |  |-  ( ph -> I e. ( 2Ideal ` R ) ) | 
						
							| 3 |  | rng2idlring.j |  |-  J = ( R |`s I ) | 
						
							| 4 |  | rng2idlring.u |  |-  ( ph -> J e. Ring ) | 
						
							| 5 |  | rng2idlring.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | rng2idlring.t |  |-  .x. = ( .r ` R ) | 
						
							| 7 |  | rng2idlring.1 |  |-  .1. = ( 1r ` J ) | 
						
							| 8 |  | rngqiprngim.g |  |-  .~ = ( R ~QG I ) | 
						
							| 9 |  | rngqiprngim.q |  |-  Q = ( R /s .~ ) | 
						
							| 10 |  | rngqiprngim.c |  |-  C = ( Base ` Q ) | 
						
							| 11 |  | rngqiprngim.p |  |-  P = ( Q Xs. J ) | 
						
							| 12 |  | rngqiprngim.f |  |-  F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) | 
						
							| 13 | 8 | ovexi |  |-  .~ e. _V | 
						
							| 14 | 13 | ecelqsi |  |-  ( x e. B -> [ x ] .~ e. ( B /. .~ ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ x e. B ) -> [ x ] .~ e. ( B /. .~ ) ) | 
						
							| 16 | 9 | a1i |  |-  ( ( ph /\ x e. B ) -> Q = ( R /s .~ ) ) | 
						
							| 17 | 5 | a1i |  |-  ( ( ph /\ x e. B ) -> B = ( Base ` R ) ) | 
						
							| 18 | 13 | a1i |  |-  ( ( ph /\ x e. B ) -> .~ e. _V ) | 
						
							| 19 | 1 | adantr |  |-  ( ( ph /\ x e. B ) -> R e. Rng ) | 
						
							| 20 | 16 17 18 19 | qusbas |  |-  ( ( ph /\ x e. B ) -> ( B /. .~ ) = ( Base ` Q ) ) | 
						
							| 21 | 20 10 | eqtr4di |  |-  ( ( ph /\ x e. B ) -> ( B /. .~ ) = C ) | 
						
							| 22 | 15 21 | eleqtrd |  |-  ( ( ph /\ x e. B ) -> [ x ] .~ e. C ) | 
						
							| 23 |  | eqid |  |-  ( Base ` J ) = ( Base ` J ) | 
						
							| 24 | 2 3 23 | 2idlbas |  |-  ( ph -> ( Base ` J ) = I ) | 
						
							| 25 | 2 3 23 | 2idlelbas |  |-  ( ph -> ( ( Base ` J ) e. ( LIdeal ` R ) /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) ) | 
						
							| 26 | 25 | simprd |  |-  ( ph -> ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) | 
						
							| 27 | 24 26 | eqeltrrd |  |-  ( ph -> I e. ( LIdeal ` ( oppR ` R ) ) ) | 
						
							| 28 |  | ringrng |  |-  ( J e. Ring -> J e. Rng ) | 
						
							| 29 | 4 28 | syl |  |-  ( ph -> J e. Rng ) | 
						
							| 30 | 3 29 | eqeltrrid |  |-  ( ph -> ( R |`s I ) e. Rng ) | 
						
							| 31 | 1 2 30 | rng2idl0 |  |-  ( ph -> ( 0g ` R ) e. I ) | 
						
							| 32 | 1 27 31 | 3jca |  |-  ( ph -> ( R e. Rng /\ I e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. I ) ) | 
						
							| 33 | 23 7 | ringidcl |  |-  ( J e. Ring -> .1. e. ( Base ` J ) ) | 
						
							| 34 | 4 33 | syl |  |-  ( ph -> .1. e. ( Base ` J ) ) | 
						
							| 35 | 34 24 | eleqtrd |  |-  ( ph -> .1. e. I ) | 
						
							| 36 | 35 | anim1ci |  |-  ( ( ph /\ x e. B ) -> ( x e. B /\ .1. e. I ) ) | 
						
							| 37 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 38 |  | eqid |  |-  ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) | 
						
							| 39 | 37 5 6 38 | rngridlmcl |  |-  ( ( ( R e. Rng /\ I e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. I ) /\ ( x e. B /\ .1. e. I ) ) -> ( .1. .x. x ) e. I ) | 
						
							| 40 | 32 36 39 | syl2an2r |  |-  ( ( ph /\ x e. B ) -> ( .1. .x. x ) e. I ) | 
						
							| 41 | 22 40 | opelxpd |  |-  ( ( ph /\ x e. B ) -> <. [ x ] .~ , ( .1. .x. x ) >. e. ( C X. I ) ) | 
						
							| 42 | 41 12 | fmptd |  |-  ( ph -> F : B --> ( C X. I ) ) |