| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
| 4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
| 6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
| 9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
| 10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
| 11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
| 12 |
|
rngqiprngim.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
| 13 |
8
|
ovexi |
|- .~ e. _V |
| 14 |
13
|
ecelqsi |
|- ( x e. B -> [ x ] .~ e. ( B /. .~ ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ x e. B ) -> [ x ] .~ e. ( B /. .~ ) ) |
| 16 |
9
|
a1i |
|- ( ( ph /\ x e. B ) -> Q = ( R /s .~ ) ) |
| 17 |
5
|
a1i |
|- ( ( ph /\ x e. B ) -> B = ( Base ` R ) ) |
| 18 |
13
|
a1i |
|- ( ( ph /\ x e. B ) -> .~ e. _V ) |
| 19 |
1
|
adantr |
|- ( ( ph /\ x e. B ) -> R e. Rng ) |
| 20 |
16 17 18 19
|
qusbas |
|- ( ( ph /\ x e. B ) -> ( B /. .~ ) = ( Base ` Q ) ) |
| 21 |
20 10
|
eqtr4di |
|- ( ( ph /\ x e. B ) -> ( B /. .~ ) = C ) |
| 22 |
15 21
|
eleqtrd |
|- ( ( ph /\ x e. B ) -> [ x ] .~ e. C ) |
| 23 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
| 24 |
2 3 23
|
2idlbas |
|- ( ph -> ( Base ` J ) = I ) |
| 25 |
2 3 23
|
2idlelbas |
|- ( ph -> ( ( Base ` J ) e. ( LIdeal ` R ) /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 26 |
25
|
simprd |
|- ( ph -> ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) |
| 27 |
24 26
|
eqeltrrd |
|- ( ph -> I e. ( LIdeal ` ( oppR ` R ) ) ) |
| 28 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
| 29 |
4 28
|
syl |
|- ( ph -> J e. Rng ) |
| 30 |
3 29
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
| 31 |
1 2 30
|
rng2idl0 |
|- ( ph -> ( 0g ` R ) e. I ) |
| 32 |
1 27 31
|
3jca |
|- ( ph -> ( R e. Rng /\ I e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. I ) ) |
| 33 |
23 7
|
ringidcl |
|- ( J e. Ring -> .1. e. ( Base ` J ) ) |
| 34 |
4 33
|
syl |
|- ( ph -> .1. e. ( Base ` J ) ) |
| 35 |
34 24
|
eleqtrd |
|- ( ph -> .1. e. I ) |
| 36 |
35
|
anim1ci |
|- ( ( ph /\ x e. B ) -> ( x e. B /\ .1. e. I ) ) |
| 37 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 38 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
| 39 |
37 5 6 38
|
rngridlmcl |
|- ( ( ( R e. Rng /\ I e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. I ) /\ ( x e. B /\ .1. e. I ) ) -> ( .1. .x. x ) e. I ) |
| 40 |
32 36 39
|
syl2an2r |
|- ( ( ph /\ x e. B ) -> ( .1. .x. x ) e. I ) |
| 41 |
22 40
|
opelxpd |
|- ( ( ph /\ x e. B ) -> <. [ x ] .~ , ( .1. .x. x ) >. e. ( C X. I ) ) |
| 42 |
41 12
|
fmptd |
|- ( ph -> F : B --> ( C X. I ) ) |