Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
12 |
|
rngqiprngim.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
13 |
8
|
ovexi |
|- .~ e. _V |
14 |
13
|
ecelqsi |
|- ( x e. B -> [ x ] .~ e. ( B /. .~ ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ x e. B ) -> [ x ] .~ e. ( B /. .~ ) ) |
16 |
9
|
a1i |
|- ( ( ph /\ x e. B ) -> Q = ( R /s .~ ) ) |
17 |
5
|
a1i |
|- ( ( ph /\ x e. B ) -> B = ( Base ` R ) ) |
18 |
13
|
a1i |
|- ( ( ph /\ x e. B ) -> .~ e. _V ) |
19 |
1
|
adantr |
|- ( ( ph /\ x e. B ) -> R e. Rng ) |
20 |
16 17 18 19
|
qusbas |
|- ( ( ph /\ x e. B ) -> ( B /. .~ ) = ( Base ` Q ) ) |
21 |
20 10
|
eqtr4di |
|- ( ( ph /\ x e. B ) -> ( B /. .~ ) = C ) |
22 |
15 21
|
eleqtrd |
|- ( ( ph /\ x e. B ) -> [ x ] .~ e. C ) |
23 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
24 |
2 3 23
|
2idlbas |
|- ( ph -> ( Base ` J ) = I ) |
25 |
2 3 23
|
2idlelbas |
|- ( ph -> ( ( Base ` J ) e. ( LIdeal ` R ) /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) ) |
26 |
25
|
simprd |
|- ( ph -> ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) |
27 |
24 26
|
eqeltrrd |
|- ( ph -> I e. ( LIdeal ` ( oppR ` R ) ) ) |
28 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
29 |
4 28
|
syl |
|- ( ph -> J e. Rng ) |
30 |
3 29
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
31 |
1 2 30
|
rng2idl0 |
|- ( ph -> ( 0g ` R ) e. I ) |
32 |
1 27 31
|
3jca |
|- ( ph -> ( R e. Rng /\ I e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. I ) ) |
33 |
23 7
|
ringidcl |
|- ( J e. Ring -> .1. e. ( Base ` J ) ) |
34 |
4 33
|
syl |
|- ( ph -> .1. e. ( Base ` J ) ) |
35 |
34 24
|
eleqtrd |
|- ( ph -> .1. e. I ) |
36 |
35
|
anim1ci |
|- ( ( ph /\ x e. B ) -> ( x e. B /\ .1. e. I ) ) |
37 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
38 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
39 |
37 5 6 38
|
rngridlmcl |
|- ( ( ( R e. Rng /\ I e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. I ) /\ ( x e. B /\ .1. e. I ) ) -> ( .1. .x. x ) e. I ) |
40 |
32 36 39
|
syl2an2r |
|- ( ( ph /\ x e. B ) -> ( .1. .x. x ) e. I ) |
41 |
22 40
|
opelxpd |
|- ( ( ph /\ x e. B ) -> <. [ x ] .~ , ( .1. .x. x ) >. e. ( C X. I ) ) |
42 |
41 12
|
fmptd |
|- ( ph -> F : B --> ( C X. I ) ) |