Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidlmcl.z |
|- .0. = ( 0g ` R ) |
2 |
|
rnglidlmcl.b |
|- B = ( Base ` R ) |
3 |
|
rnglidlmcl.t |
|- .x. = ( .r ` R ) |
4 |
|
rngridlmcl.u |
|- U = ( LIdeal ` ( oppR ` R ) ) |
5 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
6 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
7 |
2 3 5 6
|
opprmul |
|- ( X ( .r ` ( oppR ` R ) ) Y ) = ( Y .x. X ) |
8 |
5
|
opprrng |
|- ( R e. Rng -> ( oppR ` R ) e. Rng ) |
9 |
|
id |
|- ( I e. U -> I e. U ) |
10 |
1
|
eleq1i |
|- ( .0. e. I <-> ( 0g ` R ) e. I ) |
11 |
10
|
biimpi |
|- ( .0. e. I -> ( 0g ` R ) e. I ) |
12 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
13 |
5 12
|
oppr0 |
|- ( 0g ` R ) = ( 0g ` ( oppR ` R ) ) |
14 |
5 2
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
15 |
13 14 6 4
|
rnglidlmcl |
|- ( ( ( ( oppR ` R ) e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X ( .r ` ( oppR ` R ) ) Y ) e. I ) |
16 |
8 9 11 15
|
syl3anl |
|- ( ( ( R e. Rng /\ I e. U /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X ( .r ` ( oppR ` R ) ) Y ) e. I ) |
17 |
7 16
|
eqeltrrid |
|- ( ( ( R e. Rng /\ I e. U /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( Y .x. X ) e. I ) |