Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|
2 |
|
rng2idlring.i |
|
3 |
|
rng2idlring.j |
|
4 |
|
rng2idlring.u |
|
5 |
|
rng2idlring.b |
|
6 |
|
rng2idlring.t |
|
7 |
|
rng2idlring.1 |
|
8 |
|
rngqiprngim.g |
|
9 |
|
rngqiprngim.q |
|
10 |
|
rngqiprngim.c |
|
11 |
|
rngqiprngim.p |
|
12 |
|
rngqiprngim.f |
|
13 |
8
|
ovexi |
|
14 |
13
|
ecelqsi |
|
15 |
14
|
adantl |
|
16 |
9
|
a1i |
|
17 |
5
|
a1i |
|
18 |
13
|
a1i |
|
19 |
1
|
adantr |
|
20 |
16 17 18 19
|
qusbas |
|
21 |
20 10
|
eqtr4di |
|
22 |
15 21
|
eleqtrd |
|
23 |
|
eqid |
|
24 |
2 3 23
|
2idlbas |
|
25 |
2 3 23
|
2idlelbas |
|
26 |
25
|
simprd |
|
27 |
24 26
|
eqeltrrd |
|
28 |
|
ringrng |
|
29 |
4 28
|
syl |
|
30 |
3 29
|
eqeltrrid |
|
31 |
1 2 30
|
rng2idl0 |
|
32 |
1 27 31
|
3jca |
|
33 |
23 7
|
ringidcl |
|
34 |
4 33
|
syl |
|
35 |
34 24
|
eleqtrd |
|
36 |
35
|
anim1ci |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
37 5 6 38
|
rngridlmcl |
|
40 |
32 36 39
|
syl2an2r |
|
41 |
22 40
|
opelxpd |
|
42 |
41 12
|
fmptd |
|