| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|
| 2 |
|
rng2idlring.i |
|
| 3 |
|
rng2idlring.j |
|
| 4 |
|
rng2idlring.u |
|
| 5 |
|
rng2idlring.b |
|
| 6 |
|
rng2idlring.t |
|
| 7 |
|
rng2idlring.1 |
|
| 8 |
|
rngqiprngim.g |
|
| 9 |
|
rngqiprngim.q |
|
| 10 |
|
rngqiprngim.c |
|
| 11 |
|
rngqiprngim.p |
|
| 12 |
|
rngqiprngim.f |
|
| 13 |
8
|
ovexi |
|
| 14 |
13
|
ecelqsi |
|
| 15 |
14
|
adantl |
|
| 16 |
9
|
a1i |
|
| 17 |
5
|
a1i |
|
| 18 |
13
|
a1i |
|
| 19 |
1
|
adantr |
|
| 20 |
16 17 18 19
|
qusbas |
|
| 21 |
20 10
|
eqtr4di |
|
| 22 |
15 21
|
eleqtrd |
|
| 23 |
|
eqid |
|
| 24 |
2 3 23
|
2idlbas |
|
| 25 |
2 3 23
|
2idlelbas |
|
| 26 |
25
|
simprd |
|
| 27 |
24 26
|
eqeltrrd |
|
| 28 |
|
ringrng |
|
| 29 |
4 28
|
syl |
|
| 30 |
3 29
|
eqeltrrid |
|
| 31 |
1 2 30
|
rng2idl0 |
|
| 32 |
1 27 31
|
3jca |
|
| 33 |
23 7
|
ringidcl |
|
| 34 |
4 33
|
syl |
|
| 35 |
34 24
|
eleqtrd |
|
| 36 |
35
|
anim1ci |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
37 5 6 38
|
rngridlmcl |
|
| 40 |
32 36 39
|
syl2an2r |
|
| 41 |
22 40
|
opelxpd |
|
| 42 |
41 12
|
fmptd |
|