| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r |  | 
						
							| 2 |  | rng2idlring.i |  | 
						
							| 3 |  | rng2idlring.j |  | 
						
							| 4 |  | rng2idlring.u |  | 
						
							| 5 |  | rng2idlring.b |  | 
						
							| 6 |  | rng2idlring.t |  | 
						
							| 7 |  | rng2idlring.1 |  | 
						
							| 8 |  | rngqiprngim.g |  | 
						
							| 9 |  | rngqiprngim.q |  | 
						
							| 10 |  | rngqiprngim.c |  | 
						
							| 11 |  | rngqiprngim.p |  | 
						
							| 12 |  | rngqiprngim.f |  | 
						
							| 13 | 8 | ovexi |  | 
						
							| 14 | 13 | ecelqsi |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 9 | a1i |  | 
						
							| 17 | 5 | a1i |  | 
						
							| 18 | 13 | a1i |  | 
						
							| 19 | 1 | adantr |  | 
						
							| 20 | 16 17 18 19 | qusbas |  | 
						
							| 21 | 20 10 | eqtr4di |  | 
						
							| 22 | 15 21 | eleqtrd |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 2 3 23 | 2idlbas |  | 
						
							| 25 | 2 3 23 | 2idlelbas |  | 
						
							| 26 | 25 | simprd |  | 
						
							| 27 | 24 26 | eqeltrrd |  | 
						
							| 28 |  | ringrng |  | 
						
							| 29 | 4 28 | syl |  | 
						
							| 30 | 3 29 | eqeltrrid |  | 
						
							| 31 | 1 2 30 | rng2idl0 |  | 
						
							| 32 | 1 27 31 | 3jca |  | 
						
							| 33 | 23 7 | ringidcl |  | 
						
							| 34 | 4 33 | syl |  | 
						
							| 35 | 34 24 | eleqtrd |  | 
						
							| 36 | 35 | anim1ci |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 37 5 6 38 | rngridlmcl |  | 
						
							| 40 | 32 36 39 | syl2an2r |  | 
						
							| 41 | 22 40 | opelxpd |  | 
						
							| 42 | 41 12 | fmptd |  |