Metamath Proof Explorer


Theorem rngqiprngimf

Description: F is a function from (the base set of) a non-unital ring to the product of the (base set C of the) quotient with a two-sided ideal and the (base set I of the) two-sided ideal (because of 2idlbas , ( BaseJ ) = I !) (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
rngqiprngim.c C = Base Q
rngqiprngim.p P = Q × 𝑠 J
rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
Assertion rngqiprngimf φ F : B C × I

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 rngqiprngim.c C = Base Q
11 rngqiprngim.p P = Q × 𝑠 J
12 rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
13 8 ovexi ˙ V
14 13 ecelqsi x B x ˙ B / ˙
15 14 adantl φ x B x ˙ B / ˙
16 9 a1i φ x B Q = R / 𝑠 ˙
17 5 a1i φ x B B = Base R
18 13 a1i φ x B ˙ V
19 1 adantr φ x B R Rng
20 16 17 18 19 qusbas φ x B B / ˙ = Base Q
21 20 10 eqtr4di φ x B B / ˙ = C
22 15 21 eleqtrd φ x B x ˙ C
23 eqid Base J = Base J
24 2 3 23 2idlbas φ Base J = I
25 2 3 23 2idlelbas φ Base J LIdeal R Base J LIdeal opp r R
26 25 simprd φ Base J LIdeal opp r R
27 24 26 eqeltrrd φ I LIdeal opp r R
28 ringrng J Ring J Rng
29 4 28 syl φ J Rng
30 3 29 eqeltrrid φ R 𝑠 I Rng
31 1 2 30 rng2idl0 φ 0 R I
32 1 27 31 3jca φ R Rng I LIdeal opp r R 0 R I
33 23 7 ringidcl J Ring 1 ˙ Base J
34 4 33 syl φ 1 ˙ Base J
35 34 24 eleqtrd φ 1 ˙ I
36 35 anim1ci φ x B x B 1 ˙ I
37 eqid 0 R = 0 R
38 eqid LIdeal opp r R = LIdeal opp r R
39 37 5 6 38 rngridlmcl R Rng I LIdeal opp r R 0 R I x B 1 ˙ I 1 ˙ · ˙ x I
40 32 36 39 syl2an2r φ x B 1 ˙ · ˙ x I
41 22 40 opelxpd φ x B x ˙ 1 ˙ · ˙ x C × I
42 41 12 fmptd φ F : B C × I