Metamath Proof Explorer


Theorem rngqiprngimfv

Description: The value of the function F at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
rngqiprngim.c C = Base Q
rngqiprngim.p P = Q × 𝑠 J
rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
Assertion rngqiprngimfv φ A B F A = A ˙ 1 ˙ · ˙ A

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 rngqiprngim.c C = Base Q
11 rngqiprngim.p P = Q × 𝑠 J
12 rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
13 12 a1i φ A B F = x B x ˙ 1 ˙ · ˙ x
14 eceq1 x = A x ˙ = A ˙
15 oveq2 x = A 1 ˙ · ˙ x = 1 ˙ · ˙ A
16 14 15 opeq12d x = A x ˙ 1 ˙ · ˙ x = A ˙ 1 ˙ · ˙ A
17 16 adantl φ A B x = A x ˙ 1 ˙ · ˙ x = A ˙ 1 ˙ · ˙ A
18 simpr φ A B A B
19 opex A ˙ 1 ˙ · ˙ A V
20 19 a1i φ A B A ˙ 1 ˙ · ˙ A V
21 13 17 18 20 fvmptd φ A B F A = A ˙ 1 ˙ · ˙ A