Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
1
|
3ad2ant1 |
|- ( ( ph /\ A e. I /\ C e. B ) -> R e. Rng ) |
9 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|- ( ph -> .1. e. B ) |
10 |
9
|
3ad2ant1 |
|- ( ( ph /\ A e. I /\ C e. B ) -> .1. e. B ) |
11 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
12 |
1 11
|
syl |
|- ( ph -> R e. Grp ) |
13 |
12
|
3ad2ant1 |
|- ( ( ph /\ A e. I /\ C e. B ) -> R e. Grp ) |
14 |
|
simp3 |
|- ( ( ph /\ A e. I /\ C e. B ) -> C e. B ) |
15 |
5 6
|
rngcl |
|- ( ( R e. Rng /\ .1. e. B /\ C e. B ) -> ( .1. .x. C ) e. B ) |
16 |
8 10 14 15
|
syl3anc |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. .x. C ) e. B ) |
17 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
18 |
5 17
|
grpsubcl |
|- ( ( R e. Grp /\ C e. B /\ ( .1. .x. C ) e. B ) -> ( C ( -g ` R ) ( .1. .x. C ) ) e. B ) |
19 |
13 14 16 18
|
syl3anc |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( C ( -g ` R ) ( .1. .x. C ) ) e. B ) |
20 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
21 |
5 20
|
2idlss |
|- ( I e. ( 2Ideal ` R ) -> I C_ B ) |
22 |
2 21
|
syl |
|- ( ph -> I C_ B ) |
23 |
22
|
sselda |
|- ( ( ph /\ A e. I ) -> A e. B ) |
24 |
23
|
3adant3 |
|- ( ( ph /\ A e. I /\ C e. B ) -> A e. B ) |
25 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
26 |
5 25 6
|
rngdi |
|- ( ( R e. Rng /\ ( .1. e. B /\ ( C ( -g ` R ) ( .1. .x. C ) ) e. B /\ A e. B ) ) -> ( .1. .x. ( ( C ( -g ` R ) ( .1. .x. C ) ) ( +g ` R ) A ) ) = ( ( .1. .x. ( C ( -g ` R ) ( .1. .x. C ) ) ) ( +g ` R ) ( .1. .x. A ) ) ) |
27 |
8 10 19 24 26
|
syl13anc |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. .x. ( ( C ( -g ` R ) ( .1. .x. C ) ) ( +g ` R ) A ) ) = ( ( .1. .x. ( C ( -g ` R ) ( .1. .x. C ) ) ) ( +g ` R ) ( .1. .x. A ) ) ) |
28 |
5 6 17 8 10 14 16
|
rngsubdi |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. .x. ( C ( -g ` R ) ( .1. .x. C ) ) ) = ( ( .1. .x. C ) ( -g ` R ) ( .1. .x. ( .1. .x. C ) ) ) ) |
29 |
3 6
|
ressmulr |
|- ( I e. ( 2Ideal ` R ) -> .x. = ( .r ` J ) ) |
30 |
2 29
|
syl |
|- ( ph -> .x. = ( .r ` J ) ) |
31 |
30
|
oveqd |
|- ( ph -> ( .1. .x. ( .1. .x. C ) ) = ( .1. ( .r ` J ) ( .1. .x. C ) ) ) |
32 |
31
|
3ad2ant1 |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. .x. ( .1. .x. C ) ) = ( .1. ( .r ` J ) ( .1. .x. C ) ) ) |
33 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
34 |
|
eqid |
|- ( .r ` J ) = ( .r ` J ) |
35 |
4
|
3ad2ant1 |
|- ( ( ph /\ A e. I /\ C e. B ) -> J e. Ring ) |
36 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|- ( ( ph /\ C e. B ) -> ( .1. .x. C ) e. ( Base ` J ) ) |
37 |
36
|
3adant2 |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. .x. C ) e. ( Base ` J ) ) |
38 |
33 34 7 35 37
|
ringlidmd |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. ( .r ` J ) ( .1. .x. C ) ) = ( .1. .x. C ) ) |
39 |
32 38
|
eqtrd |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. .x. ( .1. .x. C ) ) = ( .1. .x. C ) ) |
40 |
39
|
oveq2d |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( ( .1. .x. C ) ( -g ` R ) ( .1. .x. ( .1. .x. C ) ) ) = ( ( .1. .x. C ) ( -g ` R ) ( .1. .x. C ) ) ) |
41 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
42 |
5 41 17
|
grpsubid |
|- ( ( R e. Grp /\ ( .1. .x. C ) e. B ) -> ( ( .1. .x. C ) ( -g ` R ) ( .1. .x. C ) ) = ( 0g ` R ) ) |
43 |
13 16 42
|
syl2anc |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( ( .1. .x. C ) ( -g ` R ) ( .1. .x. C ) ) = ( 0g ` R ) ) |
44 |
28 40 43
|
3eqtrd |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. .x. ( C ( -g ` R ) ( .1. .x. C ) ) ) = ( 0g ` R ) ) |
45 |
44
|
oveq1d |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( ( .1. .x. ( C ( -g ` R ) ( .1. .x. C ) ) ) ( +g ` R ) ( .1. .x. A ) ) = ( ( 0g ` R ) ( +g ` R ) ( .1. .x. A ) ) ) |
46 |
5 6
|
rngcl |
|- ( ( R e. Rng /\ .1. e. B /\ A e. B ) -> ( .1. .x. A ) e. B ) |
47 |
8 10 24 46
|
syl3anc |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. .x. A ) e. B ) |
48 |
5 25 41 13 47
|
grplidd |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( ( 0g ` R ) ( +g ` R ) ( .1. .x. A ) ) = ( .1. .x. A ) ) |
49 |
30
|
oveqd |
|- ( ph -> ( .1. .x. A ) = ( .1. ( .r ` J ) A ) ) |
50 |
49
|
3ad2ant1 |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. .x. A ) = ( .1. ( .r ` J ) A ) ) |
51 |
4
|
adantr |
|- ( ( ph /\ A e. I ) -> J e. Ring ) |
52 |
2 3 33
|
2idlbas |
|- ( ph -> ( Base ` J ) = I ) |
53 |
52
|
eqcomd |
|- ( ph -> I = ( Base ` J ) ) |
54 |
53
|
eleq2d |
|- ( ph -> ( A e. I <-> A e. ( Base ` J ) ) ) |
55 |
54
|
biimpa |
|- ( ( ph /\ A e. I ) -> A e. ( Base ` J ) ) |
56 |
33 34 7 51 55
|
ringlidmd |
|- ( ( ph /\ A e. I ) -> ( .1. ( .r ` J ) A ) = A ) |
57 |
56
|
3adant3 |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. ( .r ` J ) A ) = A ) |
58 |
48 50 57
|
3eqtrd |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( ( 0g ` R ) ( +g ` R ) ( .1. .x. A ) ) = A ) |
59 |
27 45 58
|
3eqtrd |
|- ( ( ph /\ A e. I /\ C e. B ) -> ( .1. .x. ( ( C ( -g ` R ) ( .1. .x. C ) ) ( +g ` R ) A ) ) = A ) |