| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
| 4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
| 5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
| 8 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → 𝑅 ∈ Rng ) |
| 9 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
| 11 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 14 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
| 15 |
5 6
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · 𝐶 ) ∈ 𝐵 ) |
| 16 |
8 10 14 15
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · 𝐶 ) ∈ 𝐵 ) |
| 17 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
| 18 |
5 17
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐶 ∈ 𝐵 ∧ ( 1 · 𝐶 ) ∈ 𝐵 ) → ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ∈ 𝐵 ) |
| 19 |
13 14 16 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ∈ 𝐵 ) |
| 20 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
| 21 |
5 20
|
2idlss |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
| 22 |
2 21
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
| 23 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ∈ 𝐵 ) |
| 24 |
23
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
| 25 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 26 |
5 25 6
|
rngdi |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ) → ( 1 · ( ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ( +g ‘ 𝑅 ) 𝐴 ) ) = ( ( 1 · ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ) ( +g ‘ 𝑅 ) ( 1 · 𝐴 ) ) ) |
| 27 |
8 10 19 24 26
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · ( ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ( +g ‘ 𝑅 ) 𝐴 ) ) = ( ( 1 · ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ) ( +g ‘ 𝑅 ) ( 1 · 𝐴 ) ) ) |
| 28 |
5 6 17 8 10 14 16
|
rngsubdi |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ) = ( ( 1 · 𝐶 ) ( -g ‘ 𝑅 ) ( 1 · ( 1 · 𝐶 ) ) ) ) |
| 29 |
3 6
|
ressmulr |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → · = ( .r ‘ 𝐽 ) ) |
| 30 |
2 29
|
syl |
⊢ ( 𝜑 → · = ( .r ‘ 𝐽 ) ) |
| 31 |
30
|
oveqd |
⊢ ( 𝜑 → ( 1 · ( 1 · 𝐶 ) ) = ( 1 ( .r ‘ 𝐽 ) ( 1 · 𝐶 ) ) ) |
| 32 |
31
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · ( 1 · 𝐶 ) ) = ( 1 ( .r ‘ 𝐽 ) ( 1 · 𝐶 ) ) ) |
| 33 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
| 34 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
| 35 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → 𝐽 ∈ Ring ) |
| 36 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · 𝐶 ) ∈ ( Base ‘ 𝐽 ) ) |
| 37 |
36
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · 𝐶 ) ∈ ( Base ‘ 𝐽 ) ) |
| 38 |
33 34 7 35 37
|
ringlidmd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝐽 ) ( 1 · 𝐶 ) ) = ( 1 · 𝐶 ) ) |
| 39 |
32 38
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · ( 1 · 𝐶 ) ) = ( 1 · 𝐶 ) ) |
| 40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( ( 1 · 𝐶 ) ( -g ‘ 𝑅 ) ( 1 · ( 1 · 𝐶 ) ) ) = ( ( 1 · 𝐶 ) ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ) |
| 41 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 42 |
5 41 17
|
grpsubid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1 · 𝐶 ) ∈ 𝐵 ) → ( ( 1 · 𝐶 ) ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) = ( 0g ‘ 𝑅 ) ) |
| 43 |
13 16 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( ( 1 · 𝐶 ) ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) = ( 0g ‘ 𝑅 ) ) |
| 44 |
28 40 43
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 45 |
44
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( ( 1 · ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ) ( +g ‘ 𝑅 ) ( 1 · 𝐴 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 1 · 𝐴 ) ) ) |
| 46 |
5 6
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 1 · 𝐴 ) ∈ 𝐵 ) |
| 47 |
8 10 24 46
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · 𝐴 ) ∈ 𝐵 ) |
| 48 |
5 25 41 13 47
|
grplidd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 1 · 𝐴 ) ) = ( 1 · 𝐴 ) ) |
| 49 |
30
|
oveqd |
⊢ ( 𝜑 → ( 1 · 𝐴 ) = ( 1 ( .r ‘ 𝐽 ) 𝐴 ) ) |
| 50 |
49
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · 𝐴 ) = ( 1 ( .r ‘ 𝐽 ) 𝐴 ) ) |
| 51 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ) → 𝐽 ∈ Ring ) |
| 52 |
2 3 33
|
2idlbas |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 ) |
| 53 |
52
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( Base ‘ 𝐽 ) ) |
| 54 |
53
|
eleq2d |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ( Base ‘ 𝐽 ) ) ) |
| 55 |
54
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ∈ ( Base ‘ 𝐽 ) ) |
| 56 |
33 34 7 51 55
|
ringlidmd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ) → ( 1 ( .r ‘ 𝐽 ) 𝐴 ) = 𝐴 ) |
| 57 |
56
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝐽 ) 𝐴 ) = 𝐴 ) |
| 58 |
48 50 57
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 1 · 𝐴 ) ) = 𝐴 ) |
| 59 |
27 45 58
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · ( ( 𝐶 ( -g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ( +g ‘ 𝑅 ) 𝐴 ) ) = 𝐴 ) |