| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r |  | 
						
							| 2 |  | rng2idlring.i |  | 
						
							| 3 |  | rng2idlring.j |  | 
						
							| 4 |  | rng2idlring.u |  | 
						
							| 5 |  | rng2idlring.b |  | 
						
							| 6 |  | rng2idlring.t |  | 
						
							| 7 |  | rng2idlring.1 |  | 
						
							| 8 | 1 | 3ad2ant1 |  | 
						
							| 9 | 1 2 3 4 5 6 7 | rngqiprng1elbas |  | 
						
							| 10 | 9 | 3ad2ant1 |  | 
						
							| 11 |  | rnggrp |  | 
						
							| 12 | 1 11 | syl |  | 
						
							| 13 | 12 | 3ad2ant1 |  | 
						
							| 14 |  | simp3 |  | 
						
							| 15 | 5 6 | rngcl |  | 
						
							| 16 | 8 10 14 15 | syl3anc |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 5 17 | grpsubcl |  | 
						
							| 19 | 13 14 16 18 | syl3anc |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 5 20 | 2idlss |  | 
						
							| 22 | 2 21 | syl |  | 
						
							| 23 | 22 | sselda |  | 
						
							| 24 | 23 | 3adant3 |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 5 25 6 | rngdi |  | 
						
							| 27 | 8 10 19 24 26 | syl13anc |  | 
						
							| 28 | 5 6 17 8 10 14 16 | rngsubdi |  | 
						
							| 29 | 3 6 | ressmulr |  | 
						
							| 30 | 2 29 | syl |  | 
						
							| 31 | 30 | oveqd |  | 
						
							| 32 | 31 | 3ad2ant1 |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 4 | 3ad2ant1 |  | 
						
							| 36 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 |  | 
						
							| 37 | 36 | 3adant2 |  | 
						
							| 38 | 33 34 7 35 37 | ringlidmd |  | 
						
							| 39 | 32 38 | eqtrd |  | 
						
							| 40 | 39 | oveq2d |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 | 5 41 17 | grpsubid |  | 
						
							| 43 | 13 16 42 | syl2anc |  | 
						
							| 44 | 28 40 43 | 3eqtrd |  | 
						
							| 45 | 44 | oveq1d |  | 
						
							| 46 | 5 6 | rngcl |  | 
						
							| 47 | 8 10 24 46 | syl3anc |  | 
						
							| 48 | 5 25 41 13 47 | grplidd |  | 
						
							| 49 | 30 | oveqd |  | 
						
							| 50 | 49 | 3ad2ant1 |  | 
						
							| 51 | 4 | adantr |  | 
						
							| 52 | 2 3 33 | 2idlbas |  | 
						
							| 53 | 52 | eqcomd |  | 
						
							| 54 | 53 | eleq2d |  | 
						
							| 55 | 54 | biimpa |  | 
						
							| 56 | 33 34 7 51 55 | ringlidmd |  | 
						
							| 57 | 56 | 3adant3 |  | 
						
							| 58 | 48 50 57 | 3eqtrd |  | 
						
							| 59 | 27 45 58 | 3eqtrd |  |