Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|
2 |
|
rng2idlring.i |
|
3 |
|
rng2idlring.j |
|
4 |
|
rng2idlring.u |
|
5 |
|
rng2idlring.b |
|
6 |
|
rng2idlring.t |
|
7 |
|
rng2idlring.1 |
|
8 |
1
|
3ad2ant1 |
|
9 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|
10 |
9
|
3ad2ant1 |
|
11 |
|
rnggrp |
|
12 |
1 11
|
syl |
|
13 |
12
|
3ad2ant1 |
|
14 |
|
simp3 |
|
15 |
5 6
|
rngcl |
|
16 |
8 10 14 15
|
syl3anc |
|
17 |
|
eqid |
|
18 |
5 17
|
grpsubcl |
|
19 |
13 14 16 18
|
syl3anc |
|
20 |
|
eqid |
|
21 |
5 20
|
2idlss |
|
22 |
2 21
|
syl |
|
23 |
22
|
sselda |
|
24 |
23
|
3adant3 |
|
25 |
|
eqid |
|
26 |
5 25 6
|
rngdi |
|
27 |
8 10 19 24 26
|
syl13anc |
|
28 |
5 6 17 8 10 14 16
|
rngsubdi |
|
29 |
3 6
|
ressmulr |
|
30 |
2 29
|
syl |
|
31 |
30
|
oveqd |
|
32 |
31
|
3ad2ant1 |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
4
|
3ad2ant1 |
|
36 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|
37 |
36
|
3adant2 |
|
38 |
33 34 7 35 37
|
ringlidmd |
|
39 |
32 38
|
eqtrd |
|
40 |
39
|
oveq2d |
|
41 |
|
eqid |
|
42 |
5 41 17
|
grpsubid |
|
43 |
13 16 42
|
syl2anc |
|
44 |
28 40 43
|
3eqtrd |
|
45 |
44
|
oveq1d |
|
46 |
5 6
|
rngcl |
|
47 |
8 10 24 46
|
syl3anc |
|
48 |
5 25 41 13 47
|
grplidd |
|
49 |
30
|
oveqd |
|
50 |
49
|
3ad2ant1 |
|
51 |
4
|
adantr |
|
52 |
2 3 33
|
2idlbas |
|
53 |
52
|
eqcomd |
|
54 |
53
|
eleq2d |
|
55 |
54
|
biimpa |
|
56 |
33 34 7 51 55
|
ringlidmd |
|
57 |
56
|
3adant3 |
|
58 |
48 50 57
|
3eqtrd |
|
59 |
27 45 58
|
3eqtrd |
|