Metamath Proof Explorer


Theorem rngqiprngimfo

Description: F is a function from (the base set of) a non-unital ring onto the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 5-Mar-2025) (Proof shortened by AV, 24-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
rngqiprngim.c C=BaseQ
rngqiprngim.p P=Q×𝑠J
rngqiprngim.f F=xBx˙1˙·˙x
Assertion rngqiprngimfo φF:BontoC×I

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 rngqiprngim.c C=BaseQ
11 rngqiprngim.p P=Q×𝑠J
12 rngqiprngim.f F=xBx˙1˙·˙x
13 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimf φF:BC×I
14 elxpi bC×Ipqb=pqpCqI
15 10 eleq2i pCpBaseQ
16 vex pV
17 8 9 5 quselbas RRngpVpBaseQcBp=c˙
18 1 16 17 sylancl φpBaseQcBp=c˙
19 15 18 bitrid φpCcBp=c˙
20 eqid +R=+R
21 rnggrp RRngRGrp
22 1 21 syl φRGrp
23 22 ad2antrr φqIcBRGrp
24 simpr φqIcBcB
25 1 ad2antrr φqIcBRRng
26 1 2 3 4 5 6 7 rngqiprng1elbas φ1˙B
27 26 ad2antrr φqIcB1˙B
28 5 6 rngcl RRng1˙BcB1˙·˙cB
29 25 27 24 28 syl3anc φqIcB1˙·˙cB
30 eqid -R=-R
31 5 30 grpsubcl RGrpcB1˙·˙cBc-R1˙·˙cB
32 23 24 29 31 syl3anc φqIcBc-R1˙·˙cB
33 eqid 2IdealR=2IdealR
34 5 33 2idlss I2IdealRIB
35 2 34 syl φIB
36 35 sselda φqIqB
37 36 adantr φqIcBqB
38 5 20 23 32 37 grpcld φqIcBc-R1˙·˙c+RqB
39 38 adantr φqIcBp=c˙c-R1˙·˙c+RqB
40 opeq1 p=c˙pq=c˙q
41 40 adantl φqIcBp=c˙pq=c˙q
42 eceq1 a=c-R1˙·˙c+Rqa˙=c-R1˙·˙c+Rq˙
43 oveq2 a=c-R1˙·˙c+Rq1˙·˙a=1˙·˙c-R1˙·˙c+Rq
44 42 43 opeq12d a=c-R1˙·˙c+Rqa˙1˙·˙a=c-R1˙·˙c+Rq˙1˙·˙c-R1˙·˙c+Rq
45 41 44 eqeqan12d φqIcBp=c˙a=c-R1˙·˙c+Rqpq=a˙1˙·˙ac˙q=c-R1˙·˙c+Rq˙1˙·˙c-R1˙·˙c+Rq
46 rngabl RRngRAbel
47 1 46 syl φRAbel
48 47 ad2antrr φqIcBRAbel
49 5 20 30 ablsubaddsub RAbelcB1˙·˙cBqBc-R1˙·˙c+Rq-Rc=q-R1˙·˙c
50 48 24 29 37 49 syl13anc φqIcBc-R1˙·˙c+Rq-Rc=q-R1˙·˙c
51 4 ringgrpd φJGrp
52 51 ad2antrr φqIcBJGrp
53 eqid BaseJ=BaseJ
54 2 3 53 2idlbas φBaseJ=I
55 54 eqcomd φI=BaseJ
56 55 eleq2d φqIqBaseJ
57 56 biimpa φqIqBaseJ
58 57 adantr φqIcBqBaseJ
59 1 2 3 4 5 6 7 rngqiprngghmlem1 φcB1˙·˙cBaseJ
60 59 adantlr φqIcB1˙·˙cBaseJ
61 eqid -J=-J
62 53 61 grpsubcl JGrpqBaseJ1˙·˙cBaseJq-J1˙·˙cBaseJ
63 52 58 60 62 syl3anc φqIcBq-J1˙·˙cBaseJ
64 ringrng JRingJRng
65 4 64 syl φJRng
66 3 65 eqeltrrid φR𝑠IRng
67 1 2 66 rng2idlnsg φINrmSGrpR
68 nsgsubg INrmSGrpRISubGrpR
69 67 68 syl φISubGrpR
70 69 ad2antrr φqIcBISubGrpR
71 simplr φqIcBqI
72 54 ad2antrr φqIcBBaseJ=I
73 60 72 eleqtrd φqIcB1˙·˙cI
74 30 3 61 subgsub ISubGrpRqI1˙·˙cIq-R1˙·˙c=q-J1˙·˙c
75 70 71 73 74 syl3anc φqIcBq-R1˙·˙c=q-J1˙·˙c
76 55 ad2antrr φqIcBI=BaseJ
77 63 75 76 3eltr4d φqIcBq-R1˙·˙cI
78 50 77 eqeltrd φqIcBc-R1˙·˙c+Rq-RcI
79 5 30 8 qusecsub RAbelISubGrpRcBc-R1˙·˙c+RqBc˙=c-R1˙·˙c+Rq˙c-R1˙·˙c+Rq-RcI
80 48 70 24 38 79 syl22anc φqIcBc˙=c-R1˙·˙c+Rq˙c-R1˙·˙c+Rq-RcI
81 78 80 mpbird φqIcBc˙=c-R1˙·˙c+Rq˙
82 1 2 3 4 5 6 7 rngqiprngimfolem φqIcB1˙·˙c-R1˙·˙c+Rq=q
83 82 3expa φqIcB1˙·˙c-R1˙·˙c+Rq=q
84 83 eqcomd φqIcBq=1˙·˙c-R1˙·˙c+Rq
85 81 84 opeq12d φqIcBc˙q=c-R1˙·˙c+Rq˙1˙·˙c-R1˙·˙c+Rq
86 85 adantr φqIcBp=c˙c˙q=c-R1˙·˙c+Rq˙1˙·˙c-R1˙·˙c+Rq
87 39 45 86 rspcedvd φqIcBp=c˙aBpq=a˙1˙·˙a
88 87 rexlimdva2 φqIcBp=c˙aBpq=a˙1˙·˙a
89 88 ex φqIcBp=c˙aBpq=a˙1˙·˙a
90 89 com23 φcBp=c˙qIaBpq=a˙1˙·˙a
91 19 90 sylbid φpCqIaBpq=a˙1˙·˙a
92 91 impd φpCqIaBpq=a˙1˙·˙a
93 92 com12 pCqIφaBpq=a˙1˙·˙a
94 93 adantl b=pqpCqIφaBpq=a˙1˙·˙a
95 94 imp b=pqpCqIφaBpq=a˙1˙·˙a
96 simplll b=pqpCqIφaBb=pq
97 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φaBFa=a˙1˙·˙a
98 97 adantll b=pqpCqIφaBFa=a˙1˙·˙a
99 96 98 eqeq12d b=pqpCqIφaBb=Fapq=a˙1˙·˙a
100 99 rexbidva b=pqpCqIφaBb=FaaBpq=a˙1˙·˙a
101 95 100 mpbird b=pqpCqIφaBb=Fa
102 101 ex b=pqpCqIφaBb=Fa
103 102 exlimivv pqb=pqpCqIφaBb=Fa
104 14 103 syl bC×IφaBb=Fa
105 104 impcom φbC×IaBb=Fa
106 105 ralrimiva φbC×IaBb=Fa
107 dffo3 F:BontoC×IF:BC×IbC×IaBb=Fa
108 13 106 107 sylanbrc φF:BontoC×I