Metamath Proof Explorer


Theorem ablsubaddsub

Description: Double subtraction and addition in abelian groups. ( cnambpcma analog.) (Contributed by AV, 3-Mar-2025)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
Assertion ablsubaddsub GAbelXBYBZBX-˙Y+˙Z-˙X=Z-˙Y

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 1 2 3 ablsubadd23 GAbelXBYBZBX-˙Y+˙Z=X+˙Z-˙Y
5 4 oveq1d GAbelXBYBZBX-˙Y+˙Z-˙X=X+˙Z-˙Y-˙X
6 simpl GAbelXBYBZBGAbel
7 simpr1 GAbelXBYBZBXB
8 ablgrp GAbelGGrp
9 8 adantr GAbelXBYBZBGGrp
10 simpr3 GAbelXBYBZBZB
11 simpr2 GAbelXBYBZBYB
12 1 3 grpsubcl GGrpZBYBZ-˙YB
13 9 10 11 12 syl3anc GAbelXBYBZBZ-˙YB
14 1 2 ablcom GAbelXBZ-˙YBX+˙Z-˙Y=Z-˙Y+˙X
15 6 7 13 14 syl3anc GAbelXBYBZBX+˙Z-˙Y=Z-˙Y+˙X
16 15 oveq1d GAbelXBYBZBX+˙Z-˙Y-˙X=Z-˙Y+˙X-˙X
17 1 2 3 grpaddsubass GGrpZ-˙YBXBXBZ-˙Y+˙X-˙X=Z-˙Y+˙X-˙X
18 9 13 7 7 17 syl13anc GAbelXBYBZBZ-˙Y+˙X-˙X=Z-˙Y+˙X-˙X
19 eqid 0G=0G
20 1 19 3 grpsubid GGrpXBX-˙X=0G
21 9 7 20 syl2anc GAbelXBYBZBX-˙X=0G
22 21 oveq2d GAbelXBYBZBZ-˙Y+˙X-˙X=Z-˙Y+˙0G
23 1 2 19 9 13 grpridd GAbelXBYBZBZ-˙Y+˙0G=Z-˙Y
24 18 22 23 3eqtrd GAbelXBYBZBZ-˙Y+˙X-˙X=Z-˙Y
25 5 16 24 3eqtrd GAbelXBYBZBX-˙Y+˙Z-˙X=Z-˙Y