Metamath Proof Explorer


Theorem rngqiprng1elbas

Description: The ring unity of a two-sided ideal of a non-unital ring belongs to the base set of the ring. (Contributed by AV, 15-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
Assertion rngqiprng1elbas ( 𝜑1𝐵 )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 3 5 ressbasss ( Base ‘ 𝐽 ) ⊆ 𝐵
9 eqid ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 )
10 9 7 ringidcl ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) )
11 4 10 syl ( 𝜑1 ∈ ( Base ‘ 𝐽 ) )
12 8 11 sselid ( 𝜑1𝐵 )