Description: The ring unity of a two-sided ideal of a non-unital ring belongs to the base set of the ring. (Contributed by AV, 15-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
rng2idlring.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | ||
rng2idlring.j | ⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) | ||
rng2idlring.u | ⊢ ( 𝜑 → 𝐽 ∈ Ring ) | ||
rng2idlring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
rng2idlring.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
rng2idlring.1 | ⊢ 1 = ( 1r ‘ 𝐽 ) | ||
Assertion | rngqiprng1elbas | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
2 | rng2idlring.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | |
3 | rng2idlring.j | ⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) | |
4 | rng2idlring.u | ⊢ ( 𝜑 → 𝐽 ∈ Ring ) | |
5 | rng2idlring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
6 | rng2idlring.t | ⊢ · = ( .r ‘ 𝑅 ) | |
7 | rng2idlring.1 | ⊢ 1 = ( 1r ‘ 𝐽 ) | |
8 | 3 5 | ressbasss | ⊢ ( Base ‘ 𝐽 ) ⊆ 𝐵 |
9 | eqid | ⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) | |
10 | 9 7 | ringidcl | ⊢ ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) ) |
11 | 4 10 | syl | ⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝐽 ) ) |
12 | 8 11 | sselid | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) |