Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
9 |
3 6
|
ressmulr |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → · = ( .r ‘ 𝐽 ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → · = ( .r ‘ 𝐽 ) ) |
11 |
10
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( 1 · 𝐴 ) · 1 ) = ( ( 1 · 𝐴 ) ( .r ‘ 𝐽 ) 1 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐽 ∈ Ring ) |
15 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( 1 · 𝐴 ) ∈ ( Base ‘ 𝐽 ) ) |
16 |
15
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 1 · 𝐴 ) ∈ ( Base ‘ 𝐽 ) ) |
17 |
12 13 7 14 16
|
ringridmd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( 1 · 𝐴 ) ( .r ‘ 𝐽 ) 1 ) = ( 1 · 𝐴 ) ) |
18 |
11 17
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( 1 · 𝐴 ) · 1 ) = ( 1 · 𝐴 ) ) |
19 |
18
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( ( 1 · 𝐴 ) · 1 ) · 𝐶 ) = ( ( 1 · 𝐴 ) · 𝐶 ) ) |
20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝑅 ∈ Rng ) |
21 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 1 ∈ 𝐵 ) |
23 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) |
24 |
5 6
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 1 · 𝐴 ) ∈ 𝐵 ) |
25 |
20 22 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 1 · 𝐴 ) ∈ 𝐵 ) |
26 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) |
27 |
5 6
|
rngass |
⊢ ( ( 𝑅 ∈ Rng ∧ ( ( 1 · 𝐴 ) ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( ( 1 · 𝐴 ) · 1 ) · 𝐶 ) = ( ( 1 · 𝐴 ) · ( 1 · 𝐶 ) ) ) |
28 |
20 25 22 26 27
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( ( 1 · 𝐴 ) · 1 ) · 𝐶 ) = ( ( 1 · 𝐴 ) · ( 1 · 𝐶 ) ) ) |
29 |
5 6
|
rngass |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( 1 · 𝐴 ) · 𝐶 ) = ( 1 · ( 𝐴 · 𝐶 ) ) ) |
30 |
20 22 23 26 29
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( 1 · 𝐴 ) · 𝐶 ) = ( 1 · ( 𝐴 · 𝐶 ) ) ) |
31 |
19 28 30
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( 1 · 𝐴 ) · ( 1 · 𝐶 ) ) = ( 1 · ( 𝐴 · 𝐶 ) ) ) |