Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
2
|
adantr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> I e. ( 2Ideal ` R ) ) |
9 |
3 6
|
ressmulr |
|- ( I e. ( 2Ideal ` R ) -> .x. = ( .r ` J ) ) |
10 |
8 9
|
syl |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> .x. = ( .r ` J ) ) |
11 |
10
|
oveqd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) .x. .1. ) = ( ( .1. .x. A ) ( .r ` J ) .1. ) ) |
12 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
13 |
|
eqid |
|- ( .r ` J ) = ( .r ` J ) |
14 |
4
|
adantr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> J e. Ring ) |
15 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|- ( ( ph /\ A e. B ) -> ( .1. .x. A ) e. ( Base ` J ) ) |
16 |
15
|
adantrr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. A ) e. ( Base ` J ) ) |
17 |
12 13 7 14 16
|
ringridmd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) ( .r ` J ) .1. ) = ( .1. .x. A ) ) |
18 |
11 17
|
eqtrd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) .x. .1. ) = ( .1. .x. A ) ) |
19 |
18
|
oveq1d |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( ( .1. .x. A ) .x. .1. ) .x. C ) = ( ( .1. .x. A ) .x. C ) ) |
20 |
1
|
adantr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> R e. Rng ) |
21 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|- ( ph -> .1. e. B ) |
22 |
21
|
adantr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> .1. e. B ) |
23 |
|
simprl |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> A e. B ) |
24 |
5 6
|
rngcl |
|- ( ( R e. Rng /\ .1. e. B /\ A e. B ) -> ( .1. .x. A ) e. B ) |
25 |
20 22 23 24
|
syl3anc |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. A ) e. B ) |
26 |
|
simprr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> C e. B ) |
27 |
5 6
|
rngass |
|- ( ( R e. Rng /\ ( ( .1. .x. A ) e. B /\ .1. e. B /\ C e. B ) ) -> ( ( ( .1. .x. A ) .x. .1. ) .x. C ) = ( ( .1. .x. A ) .x. ( .1. .x. C ) ) ) |
28 |
20 25 22 26 27
|
syl13anc |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( ( .1. .x. A ) .x. .1. ) .x. C ) = ( ( .1. .x. A ) .x. ( .1. .x. C ) ) ) |
29 |
5 6
|
rngass |
|- ( ( R e. Rng /\ ( .1. e. B /\ A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) .x. C ) = ( .1. .x. ( A .x. C ) ) ) |
30 |
20 22 23 26 29
|
syl13anc |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) .x. C ) = ( .1. .x. ( A .x. C ) ) ) |
31 |
19 28 30
|
3eqtr3d |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) .x. ( .1. .x. C ) ) = ( .1. .x. ( A .x. C ) ) ) |