Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
10 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
11 |
4 10
|
syl |
|- ( ph -> J e. Rng ) |
12 |
3 11
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
13 |
1 2 12
|
rng2idlsubrng |
|- ( ph -> I e. ( SubRng ` R ) ) |
14 |
|
subrngsubg |
|- ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) |
15 |
13 14
|
syl |
|- ( ph -> I e. ( SubGrp ` R ) ) |
16 |
1 2 15
|
3jca |
|- ( ph -> ( R e. Rng /\ I e. ( 2Ideal ` R ) /\ I e. ( SubGrp ` R ) ) ) |
17 |
|
eqid |
|- ( R ~QG I ) = ( R ~QG I ) |
18 |
8
|
oveq2i |
|- ( R /s .~ ) = ( R /s ( R ~QG I ) ) |
19 |
9 18
|
eqtri |
|- Q = ( R /s ( R ~QG I ) ) |
20 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
21 |
17 19 5 6 20
|
qusmulrng |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) /\ I e. ( SubGrp ` R ) ) /\ ( A e. B /\ C e. B ) ) -> ( [ A ] ( R ~QG I ) ( .r ` Q ) [ C ] ( R ~QG I ) ) = [ ( A .x. C ) ] ( R ~QG I ) ) |
22 |
16 21
|
sylan |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] ( R ~QG I ) ( .r ` Q ) [ C ] ( R ~QG I ) ) = [ ( A .x. C ) ] ( R ~QG I ) ) |
23 |
8
|
eceq2i |
|- [ A ] .~ = [ A ] ( R ~QG I ) |
24 |
8
|
eceq2i |
|- [ C ] .~ = [ C ] ( R ~QG I ) |
25 |
23 24
|
oveq12i |
|- ( [ A ] .~ ( .r ` Q ) [ C ] .~ ) = ( [ A ] ( R ~QG I ) ( .r ` Q ) [ C ] ( R ~QG I ) ) |
26 |
8
|
eceq2i |
|- [ ( A .x. C ) ] .~ = [ ( A .x. C ) ] ( R ~QG I ) |
27 |
22 25 26
|
3eqtr4g |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( .r ` Q ) [ C ] .~ ) = [ ( A .x. C ) ] .~ ) |
28 |
27
|
eqcomd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A .x. C ) ] .~ = ( [ A ] .~ ( .r ` Q ) [ C ] .~ ) ) |