Metamath Proof Explorer


Theorem rngqiprnglinlem2

Description: Lemma 2 for rngqiprnglin . (Contributed by AV, 28-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
rngqiprngim.q 𝑄 = ( 𝑅 /s )
Assertion rngqiprnglinlem2 ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → [ ( 𝐴 · 𝐶 ) ] = ( [ 𝐴 ] ( .r𝑄 ) [ 𝐶 ] ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngim.q 𝑄 = ( 𝑅 /s )
10 ringrng ( 𝐽 ∈ Ring → 𝐽 ∈ Rng )
11 4 10 syl ( 𝜑𝐽 ∈ Rng )
12 3 11 eqeltrrid ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
13 1 2 12 rng2idlsubrng ( 𝜑𝐼 ∈ ( SubRng ‘ 𝑅 ) )
14 subrngsubg ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
15 13 14 syl ( 𝜑𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
16 1 2 15 3jca ( 𝜑 → ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) )
17 eqid ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 )
18 8 oveq2i ( 𝑅 /s ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
19 9 18 eqtri 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
20 eqid ( .r𝑄 ) = ( .r𝑄 )
21 17 19 5 6 20 qusmulrng ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( .r𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝐴 · 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) )
22 16 21 sylan ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( .r𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝐴 · 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) )
23 8 eceq2i [ 𝐴 ] = [ 𝐴 ] ( 𝑅 ~QG 𝐼 )
24 8 eceq2i [ 𝐶 ] = [ 𝐶 ] ( 𝑅 ~QG 𝐼 )
25 23 24 oveq12i ( [ 𝐴 ] ( .r𝑄 ) [ 𝐶 ] ) = ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( .r𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) )
26 8 eceq2i [ ( 𝐴 · 𝐶 ) ] = [ ( 𝐴 · 𝐶 ) ] ( 𝑅 ~QG 𝐼 )
27 22 25 26 3eqtr4g ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( [ 𝐴 ] ( .r𝑄 ) [ 𝐶 ] ) = [ ( 𝐴 · 𝐶 ) ] )
28 27 eqcomd ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → [ ( 𝐴 · 𝐶 ) ] = ( [ 𝐴 ] ( .r𝑄 ) [ 𝐶 ] ) )