Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
12 |
3 11
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
13 |
1 2 12
|
rng2idlsubrng |
⊢ ( 𝜑 → 𝐼 ∈ ( SubRng ‘ 𝑅 ) ) |
14 |
|
subrngsubg |
⊢ ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
16 |
1 2 15
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ) |
17 |
|
eqid |
⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) |
18 |
8
|
oveq2i |
⊢ ( 𝑅 /s ∼ ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
19 |
9 18
|
eqtri |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
20 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
21 |
17 19 5 6 20
|
qusmulrng |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝐴 · 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) ) |
22 |
16 21
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝐴 · 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) ) |
23 |
8
|
eceq2i |
⊢ [ 𝐴 ] ∼ = [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) |
24 |
8
|
eceq2i |
⊢ [ 𝐶 ] ∼ = [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) |
25 |
23 24
|
oveq12i |
⊢ ( [ 𝐴 ] ∼ ( .r ‘ 𝑄 ) [ 𝐶 ] ∼ ) = ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) |
26 |
8
|
eceq2i |
⊢ [ ( 𝐴 · 𝐶 ) ] ∼ = [ ( 𝐴 · 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) |
27 |
22 25 26
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ∼ ( .r ‘ 𝑄 ) [ 𝐶 ] ∼ ) = [ ( 𝐴 · 𝐶 ) ] ∼ ) |
28 |
27
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → [ ( 𝐴 · 𝐶 ) ] ∼ = ( [ 𝐴 ] ∼ ( .r ‘ 𝑄 ) [ 𝐶 ] ∼ ) ) |