| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rng2idlring.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 3 |  | rng2idlring.j | ⊢ 𝐽  =  ( 𝑅  ↾s  𝐼 ) | 
						
							| 4 |  | rng2idlring.u | ⊢ ( 𝜑  →  𝐽  ∈  Ring ) | 
						
							| 5 |  | rng2idlring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | rng2idlring.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 7 |  | rng2idlring.1 | ⊢  1   =  ( 1r ‘ 𝐽 ) | 
						
							| 8 |  | rngqiprngim.g | ⊢  ∼   =  ( 𝑅  ~QG  𝐼 ) | 
						
							| 9 |  | rngqiprngim.q | ⊢ 𝑄  =  ( 𝑅  /s   ∼  ) | 
						
							| 10 |  | ringrng | ⊢ ( 𝐽  ∈  Ring  →  𝐽  ∈  Rng ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Rng ) | 
						
							| 12 | 3 11 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝐼 )  ∈  Rng ) | 
						
							| 13 | 1 2 12 | rng2idlsubrng | ⊢ ( 𝜑  →  𝐼  ∈  ( SubRng ‘ 𝑅 ) ) | 
						
							| 14 |  | subrngsubg | ⊢ ( 𝐼  ∈  ( SubRng ‘ 𝑅 )  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 16 | 1 2 15 | 3jca | ⊢ ( 𝜑  →  ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑅  ~QG  𝐼 )  =  ( 𝑅  ~QG  𝐼 ) | 
						
							| 18 | 8 | oveq2i | ⊢ ( 𝑅  /s   ∼  )  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 19 | 9 18 | eqtri | ⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 20 |  | eqid | ⊢ ( .r ‘ 𝑄 )  =  ( .r ‘ 𝑄 ) | 
						
							| 21 | 17 19 5 6 20 | qusmulrng | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  →  ( [ 𝐴 ] ( 𝑅  ~QG  𝐼 ) ( .r ‘ 𝑄 ) [ 𝐶 ] ( 𝑅  ~QG  𝐼 ) )  =  [ ( 𝐴  ·  𝐶 ) ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 22 | 16 21 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  →  ( [ 𝐴 ] ( 𝑅  ~QG  𝐼 ) ( .r ‘ 𝑄 ) [ 𝐶 ] ( 𝑅  ~QG  𝐼 ) )  =  [ ( 𝐴  ·  𝐶 ) ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 23 | 8 | eceq2i | ⊢ [ 𝐴 ]  ∼   =  [ 𝐴 ] ( 𝑅  ~QG  𝐼 ) | 
						
							| 24 | 8 | eceq2i | ⊢ [ 𝐶 ]  ∼   =  [ 𝐶 ] ( 𝑅  ~QG  𝐼 ) | 
						
							| 25 | 23 24 | oveq12i | ⊢ ( [ 𝐴 ]  ∼  ( .r ‘ 𝑄 ) [ 𝐶 ]  ∼  )  =  ( [ 𝐴 ] ( 𝑅  ~QG  𝐼 ) ( .r ‘ 𝑄 ) [ 𝐶 ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 26 | 8 | eceq2i | ⊢ [ ( 𝐴  ·  𝐶 ) ]  ∼   =  [ ( 𝐴  ·  𝐶 ) ] ( 𝑅  ~QG  𝐼 ) | 
						
							| 27 | 22 25 26 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  →  ( [ 𝐴 ]  ∼  ( .r ‘ 𝑄 ) [ 𝐶 ]  ∼  )  =  [ ( 𝐴  ·  𝐶 ) ]  ∼  ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  →  [ ( 𝐴  ·  𝐶 ) ]  ∼   =  ( [ 𝐴 ]  ∼  ( .r ‘ 𝑄 ) [ 𝐶 ]  ∼  ) ) |