Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
1 2 3 4 5 6 7 8 9
|
rngqiprnglinlem2 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → [ ( 𝐴 · 𝐶 ) ] ∼ = ( [ 𝐴 ] ∼ ( .r ‘ 𝑄 ) [ 𝐶 ] ∼ ) ) |
11 |
1
|
anim1i |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) |
12 |
|
3anass |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝑅 ∈ Rng ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) |
14 |
5 6
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 · 𝐶 ) ∈ 𝐵 ) |
15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐴 · 𝐶 ) ∈ 𝐵 ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
17 |
8 9 5 16
|
quseccl0 |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 · 𝐶 ) ∈ 𝐵 ) → [ ( 𝐴 · 𝐶 ) ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
18 |
1 15 17
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → [ ( 𝐴 · 𝐶 ) ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
19 |
10 18
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ∼ ( .r ‘ 𝑄 ) [ 𝐶 ] ∼ ) ∈ ( Base ‘ 𝑄 ) ) |