Metamath Proof Explorer


Theorem rngqiprnglinlem3

Description: Lemma 3 for rngqiprnglin . (Contributed by AV, 28-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
rngqiprngim.q 𝑄 = ( 𝑅 /s )
Assertion rngqiprnglinlem3 ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( [ 𝐴 ] ( .r𝑄 ) [ 𝐶 ] ) ∈ ( Base ‘ 𝑄 ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngim.q 𝑄 = ( 𝑅 /s )
10 1 2 3 4 5 6 7 8 9 rngqiprnglinlem2 ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → [ ( 𝐴 · 𝐶 ) ] = ( [ 𝐴 ] ( .r𝑄 ) [ 𝐶 ] ) )
11 1 anim1i ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 𝑅 ∈ Rng ∧ ( 𝐴𝐵𝐶𝐵 ) ) )
12 3anass ( ( 𝑅 ∈ Rng ∧ 𝐴𝐵𝐶𝐵 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝐴𝐵𝐶𝐵 ) ) )
13 11 12 sylibr ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 𝑅 ∈ Rng ∧ 𝐴𝐵𝐶𝐵 ) )
14 5 6 rngcl ( ( 𝑅 ∈ Rng ∧ 𝐴𝐵𝐶𝐵 ) → ( 𝐴 · 𝐶 ) ∈ 𝐵 )
15 13 14 syl ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 𝐴 · 𝐶 ) ∈ 𝐵 )
16 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
17 8 9 5 16 quseccl0 ( ( 𝑅 ∈ Rng ∧ ( 𝐴 · 𝐶 ) ∈ 𝐵 ) → [ ( 𝐴 · 𝐶 ) ] ∈ ( Base ‘ 𝑄 ) )
18 1 15 17 syl2an2r ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → [ ( 𝐴 · 𝐶 ) ] ∈ ( Base ‘ 𝑄 ) )
19 10 18 eqeltrrd ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( [ 𝐴 ] ( .r𝑄 ) [ 𝐶 ] ) ∈ ( Base ‘ 𝑄 ) )