Metamath Proof Explorer


Theorem rngqiprnglinlem3

Description: Lemma 3 for rngqiprnglin . (Contributed by AV, 28-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
Assertion rngqiprnglinlem3 φ A B C B A ˙ Q C ˙ Base Q

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 1 2 3 4 5 6 7 8 9 rngqiprnglinlem2 φ A B C B A · ˙ C ˙ = A ˙ Q C ˙
11 1 anim1i φ A B C B R Rng A B C B
12 3anass R Rng A B C B R Rng A B C B
13 11 12 sylibr φ A B C B R Rng A B C B
14 5 6 rngcl R Rng A B C B A · ˙ C B
15 13 14 syl φ A B C B A · ˙ C B
16 eqid Base Q = Base Q
17 8 9 5 16 quseccl0 R Rng A · ˙ C B A · ˙ C ˙ Base Q
18 1 15 17 syl2an2r φ A B C B A · ˙ C ˙ Base Q
19 10 18 eqeltrrd φ A B C B A ˙ Q C ˙ Base Q