Metamath Proof Explorer


Theorem rngqiprnglinlem3

Description: Lemma 3 for rngqiprnglin . (Contributed by AV, 28-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r
|- ( ph -> R e. Rng )
rng2idlring.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlring.j
|- J = ( R |`s I )
rng2idlring.u
|- ( ph -> J e. Ring )
rng2idlring.b
|- B = ( Base ` R )
rng2idlring.t
|- .x. = ( .r ` R )
rng2idlring.1
|- .1. = ( 1r ` J )
rngqiprngim.g
|- .~ = ( R ~QG I )
rngqiprngim.q
|- Q = ( R /s .~ )
Assertion rngqiprnglinlem3
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( .r ` Q ) [ C ] .~ ) e. ( Base ` Q ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r
 |-  ( ph -> R e. Rng )
2 rng2idlring.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlring.j
 |-  J = ( R |`s I )
4 rng2idlring.u
 |-  ( ph -> J e. Ring )
5 rng2idlring.b
 |-  B = ( Base ` R )
6 rng2idlring.t
 |-  .x. = ( .r ` R )
7 rng2idlring.1
 |-  .1. = ( 1r ` J )
8 rngqiprngim.g
 |-  .~ = ( R ~QG I )
9 rngqiprngim.q
 |-  Q = ( R /s .~ )
10 1 2 3 4 5 6 7 8 9 rngqiprnglinlem2
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A .x. C ) ] .~ = ( [ A ] .~ ( .r ` Q ) [ C ] .~ ) )
11 1 anim1i
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Rng /\ ( A e. B /\ C e. B ) ) )
12 3anass
 |-  ( ( R e. Rng /\ A e. B /\ C e. B ) <-> ( R e. Rng /\ ( A e. B /\ C e. B ) ) )
13 11 12 sylibr
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Rng /\ A e. B /\ C e. B ) )
14 5 6 rngcl
 |-  ( ( R e. Rng /\ A e. B /\ C e. B ) -> ( A .x. C ) e. B )
15 13 14 syl
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( A .x. C ) e. B )
16 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
17 8 9 5 16 quseccl0
 |-  ( ( R e. Rng /\ ( A .x. C ) e. B ) -> [ ( A .x. C ) ] .~ e. ( Base ` Q ) )
18 1 15 17 syl2an2r
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A .x. C ) ] .~ e. ( Base ` Q ) )
19 10 18 eqeltrrd
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( .r ` Q ) [ C ] .~ ) e. ( Base ` Q ) )