| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
| 4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
| 6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
| 9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
rngqiprnglinlem2 |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A .x. C ) ] .~ = ( [ A ] .~ ( .r ` Q ) [ C ] .~ ) ) |
| 11 |
1
|
anim1i |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Rng /\ ( A e. B /\ C e. B ) ) ) |
| 12 |
|
3anass |
|- ( ( R e. Rng /\ A e. B /\ C e. B ) <-> ( R e. Rng /\ ( A e. B /\ C e. B ) ) ) |
| 13 |
11 12
|
sylibr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Rng /\ A e. B /\ C e. B ) ) |
| 14 |
5 6
|
rngcl |
|- ( ( R e. Rng /\ A e. B /\ C e. B ) -> ( A .x. C ) e. B ) |
| 15 |
13 14
|
syl |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( A .x. C ) e. B ) |
| 16 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 17 |
8 9 5 16
|
quseccl0 |
|- ( ( R e. Rng /\ ( A .x. C ) e. B ) -> [ ( A .x. C ) ] .~ e. ( Base ` Q ) ) |
| 18 |
1 15 17
|
syl2an2r |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A .x. C ) ] .~ e. ( Base ` Q ) ) |
| 19 |
10 18
|
eqeltrrd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( .r ` Q ) [ C ] .~ ) e. ( Base ` Q ) ) |