Metamath Proof Explorer


Theorem rngqiprngho

Description: F is a homomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r
|- ( ph -> R e. Rng )
rng2idlring.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlring.j
|- J = ( R |`s I )
rng2idlring.u
|- ( ph -> J e. Ring )
rng2idlring.b
|- B = ( Base ` R )
rng2idlring.t
|- .x. = ( .r ` R )
rng2idlring.1
|- .1. = ( 1r ` J )
rngqiprngim.g
|- .~ = ( R ~QG I )
rngqiprngim.q
|- Q = ( R /s .~ )
rngqiprngim.c
|- C = ( Base ` Q )
rngqiprngim.p
|- P = ( Q Xs. J )
rngqiprngim.f
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. )
Assertion rngqiprngho
|- ( ph -> F e. ( R RngHom P ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r
 |-  ( ph -> R e. Rng )
2 rng2idlring.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlring.j
 |-  J = ( R |`s I )
4 rng2idlring.u
 |-  ( ph -> J e. Ring )
5 rng2idlring.b
 |-  B = ( Base ` R )
6 rng2idlring.t
 |-  .x. = ( .r ` R )
7 rng2idlring.1
 |-  .1. = ( 1r ` J )
8 rngqiprngim.g
 |-  .~ = ( R ~QG I )
9 rngqiprngim.q
 |-  Q = ( R /s .~ )
10 rngqiprngim.c
 |-  C = ( Base ` Q )
11 rngqiprngim.p
 |-  P = ( Q Xs. J )
12 rngqiprngim.f
 |-  F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. )
13 1 2 3 4 5 6 7 8 9 10 11 rngqiprng
 |-  ( ph -> P e. Rng )
14 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngghm
 |-  ( ph -> F e. ( R GrpHom P ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprnglin
 |-  ( ph -> A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) )
16 14 15 jca
 |-  ( ph -> ( F e. ( R GrpHom P ) /\ A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) )
17 eqid
 |-  ( .r ` P ) = ( .r ` P )
18 5 6 17 isrnghm
 |-  ( F e. ( R RngHom P ) <-> ( ( R e. Rng /\ P e. Rng ) /\ ( F e. ( R GrpHom P ) /\ A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) ) )
19 1 13 16 18 syl21anbrc
 |-  ( ph -> F e. ( R RngHom P ) )