Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
12 |
|
rngqiprngim.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprng |
|- ( ph -> P e. Rng ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngghm |
|- ( ph -> F e. ( R GrpHom P ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprnglin |
|- ( ph -> A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) |
16 |
14 15
|
jca |
|- ( ph -> ( F e. ( R GrpHom P ) /\ A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) ) |
17 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
18 |
5 6 17
|
isrnghm |
|- ( F e. ( R RngHom P ) <-> ( ( R e. Rng /\ P e. Rng ) /\ ( F e. ( R GrpHom P ) /\ A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) ) ) |
19 |
1 13 16 18
|
syl21anbrc |
|- ( ph -> F e. ( R RngHom P ) ) |