| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r |  |-  ( ph -> R e. Rng ) | 
						
							| 2 |  | rng2idlring.i |  |-  ( ph -> I e. ( 2Ideal ` R ) ) | 
						
							| 3 |  | rng2idlring.j |  |-  J = ( R |`s I ) | 
						
							| 4 |  | rng2idlring.u |  |-  ( ph -> J e. Ring ) | 
						
							| 5 |  | rng2idlring.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | rng2idlring.t |  |-  .x. = ( .r ` R ) | 
						
							| 7 |  | rng2idlring.1 |  |-  .1. = ( 1r ` J ) | 
						
							| 8 |  | rngqiprngim.g |  |-  .~ = ( R ~QG I ) | 
						
							| 9 |  | rngqiprngim.q |  |-  Q = ( R /s .~ ) | 
						
							| 10 |  | rngqiprngim.c |  |-  C = ( Base ` Q ) | 
						
							| 11 |  | rngqiprngim.p |  |-  P = ( Q Xs. J ) | 
						
							| 12 |  | rngqiprngim.f |  |-  F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 | rngqiprng |  |-  ( ph -> P e. Rng ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngghm |  |-  ( ph -> F e. ( R GrpHom P ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprnglin |  |-  ( ph -> A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) | 
						
							| 16 | 14 15 | jca |  |-  ( ph -> ( F e. ( R GrpHom P ) /\ A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) ) | 
						
							| 17 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 18 | 5 6 17 | isrnghm |  |-  ( F e. ( R RngHom P ) <-> ( ( R e. Rng /\ P e. Rng ) /\ ( F e. ( R GrpHom P ) /\ A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) ) ) | 
						
							| 19 | 1 13 16 18 | syl21anbrc |  |-  ( ph -> F e. ( R RngHom P ) ) |