Metamath Proof Explorer


Theorem rngqiprng

Description: The product of the quotient with a two-sided ideal and the two-sided ideal is a non-unital ring. (Contributed by AV, 23-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r
|- ( ph -> R e. Rng )
rng2idlring.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlring.j
|- J = ( R |`s I )
rng2idlring.u
|- ( ph -> J e. Ring )
rng2idlring.b
|- B = ( Base ` R )
rng2idlring.t
|- .x. = ( .r ` R )
rng2idlring.1
|- .1. = ( 1r ` J )
rngqiprngim.g
|- .~ = ( R ~QG I )
rngqiprngim.q
|- Q = ( R /s .~ )
rngqiprngim.c
|- C = ( Base ` Q )
rngqiprngim.p
|- P = ( Q Xs. J )
Assertion rngqiprng
|- ( ph -> P e. Rng )

Proof

Step Hyp Ref Expression
1 rng2idlring.r
 |-  ( ph -> R e. Rng )
2 rng2idlring.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlring.j
 |-  J = ( R |`s I )
4 rng2idlring.u
 |-  ( ph -> J e. Ring )
5 rng2idlring.b
 |-  B = ( Base ` R )
6 rng2idlring.t
 |-  .x. = ( .r ` R )
7 rng2idlring.1
 |-  .1. = ( 1r ` J )
8 rngqiprngim.g
 |-  .~ = ( R ~QG I )
9 rngqiprngim.q
 |-  Q = ( R /s .~ )
10 rngqiprngim.c
 |-  C = ( Base ` Q )
11 rngqiprngim.p
 |-  P = ( Q Xs. J )
12 ringrng
 |-  ( J e. Ring -> J e. Rng )
13 4 12 syl
 |-  ( ph -> J e. Rng )
14 3 13 eqeltrrid
 |-  ( ph -> ( R |`s I ) e. Rng )
15 1 2 14 rng2idlsubrng
 |-  ( ph -> I e. ( SubRng ` R ) )
16 subrngsubg
 |-  ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) )
17 15 16 syl
 |-  ( ph -> I e. ( SubGrp ` R ) )
18 8 oveq2i
 |-  ( R /s .~ ) = ( R /s ( R ~QG I ) )
19 9 18 eqtri
 |-  Q = ( R /s ( R ~QG I ) )
20 eqid
 |-  ( 2Ideal ` R ) = ( 2Ideal ` R )
21 19 20 qus2idrng
 |-  ( ( R e. Rng /\ I e. ( 2Ideal ` R ) /\ I e. ( SubGrp ` R ) ) -> Q e. Rng )
22 1 2 17 21 syl3anc
 |-  ( ph -> Q e. Rng )
23 11 22 13 xpsrngd
 |-  ( ph -> P e. Rng )