| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r |  |-  ( ph -> R e. Rng ) | 
						
							| 2 |  | rng2idlring.i |  |-  ( ph -> I e. ( 2Ideal ` R ) ) | 
						
							| 3 |  | rng2idlring.j |  |-  J = ( R |`s I ) | 
						
							| 4 |  | rng2idlring.u |  |-  ( ph -> J e. Ring ) | 
						
							| 5 |  | rng2idlring.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | rng2idlring.t |  |-  .x. = ( .r ` R ) | 
						
							| 7 |  | rng2idlring.1 |  |-  .1. = ( 1r ` J ) | 
						
							| 8 |  | rngqiprngim.g |  |-  .~ = ( R ~QG I ) | 
						
							| 9 |  | rngqiprngim.q |  |-  Q = ( R /s .~ ) | 
						
							| 10 |  | rngqiprngim.c |  |-  C = ( Base ` Q ) | 
						
							| 11 |  | rngqiprngim.p |  |-  P = ( Q Xs. J ) | 
						
							| 12 |  | ringrng |  |-  ( J e. Ring -> J e. Rng ) | 
						
							| 13 | 4 12 | syl |  |-  ( ph -> J e. Rng ) | 
						
							| 14 | 3 13 | eqeltrrid |  |-  ( ph -> ( R |`s I ) e. Rng ) | 
						
							| 15 | 1 2 14 | rng2idlsubrng |  |-  ( ph -> I e. ( SubRng ` R ) ) | 
						
							| 16 |  | subrngsubg |  |-  ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> I e. ( SubGrp ` R ) ) | 
						
							| 18 | 8 | oveq2i |  |-  ( R /s .~ ) = ( R /s ( R ~QG I ) ) | 
						
							| 19 | 9 18 | eqtri |  |-  Q = ( R /s ( R ~QG I ) ) | 
						
							| 20 |  | eqid |  |-  ( 2Ideal ` R ) = ( 2Ideal ` R ) | 
						
							| 21 | 19 20 | qus2idrng |  |-  ( ( R e. Rng /\ I e. ( 2Ideal ` R ) /\ I e. ( SubGrp ` R ) ) -> Q e. Rng ) | 
						
							| 22 | 1 2 17 21 | syl3anc |  |-  ( ph -> Q e. Rng ) | 
						
							| 23 | 11 22 13 | xpsrngd |  |-  ( ph -> P e. Rng ) |