Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
12 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
13 |
4 12
|
syl |
|- ( ph -> J e. Rng ) |
14 |
3 13
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
15 |
1 2 14
|
rng2idlsubrng |
|- ( ph -> I e. ( SubRng ` R ) ) |
16 |
|
subrngsubg |
|- ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) |
17 |
15 16
|
syl |
|- ( ph -> I e. ( SubGrp ` R ) ) |
18 |
8
|
oveq2i |
|- ( R /s .~ ) = ( R /s ( R ~QG I ) ) |
19 |
9 18
|
eqtri |
|- Q = ( R /s ( R ~QG I ) ) |
20 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
21 |
19 20
|
qus2idrng |
|- ( ( R e. Rng /\ I e. ( 2Ideal ` R ) /\ I e. ( SubGrp ` R ) ) -> Q e. Rng ) |
22 |
1 2 17 21
|
syl3anc |
|- ( ph -> Q e. Rng ) |
23 |
11 22 13
|
xpsrngd |
|- ( ph -> P e. Rng ) |