| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
| 4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
| 6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
| 9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
| 10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
| 11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
| 12 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
| 13 |
4 12
|
syl |
|- ( ph -> J e. Rng ) |
| 14 |
3 13
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
| 15 |
1 2 14
|
rng2idlsubrng |
|- ( ph -> I e. ( SubRng ` R ) ) |
| 16 |
|
subrngsubg |
|- ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) |
| 17 |
15 16
|
syl |
|- ( ph -> I e. ( SubGrp ` R ) ) |
| 18 |
8
|
oveq2i |
|- ( R /s .~ ) = ( R /s ( R ~QG I ) ) |
| 19 |
9 18
|
eqtri |
|- Q = ( R /s ( R ~QG I ) ) |
| 20 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
| 21 |
19 20
|
qus2idrng |
|- ( ( R e. Rng /\ I e. ( 2Ideal ` R ) /\ I e. ( SubGrp ` R ) ) -> Q e. Rng ) |
| 22 |
1 2 17 21
|
syl3anc |
|- ( ph -> Q e. Rng ) |
| 23 |
11 22 13
|
xpsrngd |
|- ( ph -> P e. Rng ) |