Metamath Proof Explorer


Theorem rngqiprng

Description: The product of the quotient with a two-sided ideal and the two-sided ideal is a non-unital ring. (Contributed by AV, 23-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
rngqiprngim.c C = Base Q
rngqiprngim.p P = Q × 𝑠 J
Assertion rngqiprng φ P Rng

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 rngqiprngim.c C = Base Q
11 rngqiprngim.p P = Q × 𝑠 J
12 ringrng J Ring J Rng
13 4 12 syl φ J Rng
14 3 13 eqeltrrid φ R 𝑠 I Rng
15 1 2 14 rng2idlsubrng φ I SubRng R
16 subrngsubg I SubRng R I SubGrp R
17 15 16 syl φ I SubGrp R
18 8 oveq2i R / 𝑠 ˙ = R / 𝑠 R ~ QG I
19 9 18 eqtri Q = R / 𝑠 R ~ QG I
20 eqid 2Ideal R = 2Ideal R
21 19 20 qus2idrng R Rng I 2Ideal R I SubGrp R Q Rng
22 1 2 17 21 syl3anc φ Q Rng
23 11 22 13 xpsrngd φ P Rng