Metamath Proof Explorer


Theorem rngqiprngho

Description: F is a homomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
rngqiprngim.q 𝑄 = ( 𝑅 /s )
rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
Assertion rngqiprngho ( 𝜑𝐹 ∈ ( 𝑅 RngHom 𝑃 ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngim.q 𝑄 = ( 𝑅 /s )
10 rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
11 rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
12 rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
13 1 2 3 4 5 6 7 8 9 10 11 rngqiprng ( 𝜑𝑃 ∈ Rng )
14 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngghm ( 𝜑𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprnglin ( 𝜑 → ∀ 𝑎𝐵𝑏𝐵 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝐹𝑎 ) ( .r𝑃 ) ( 𝐹𝑏 ) ) )
16 14 15 jca ( 𝜑 → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) ∧ ∀ 𝑎𝐵𝑏𝐵 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝐹𝑎 ) ( .r𝑃 ) ( 𝐹𝑏 ) ) ) )
17 eqid ( .r𝑃 ) = ( .r𝑃 )
18 5 6 17 isrnghm ( 𝐹 ∈ ( 𝑅 RngHom 𝑃 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑃 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) ∧ ∀ 𝑎𝐵𝑏𝐵 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝐹𝑎 ) ( .r𝑃 ) ( 𝐹𝑏 ) ) ) ) )
19 1 13 16 18 syl21anbrc ( 𝜑𝐹 ∈ ( 𝑅 RngHom 𝑃 ) )