Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngim.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
11 |
|
rngqiprngim.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
12 |
|
rngqiprngim.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprng |
⊢ ( 𝜑 → 𝑃 ∈ Rng ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngghm |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprnglin |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑏 ) ) ) |
16 |
14 15
|
jca |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
17 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
18 |
5 6 17
|
isrnghm |
⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑃 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑃 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
19 |
1 13 16 18
|
syl21anbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RngHom 𝑃 ) ) |