Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngim.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
11 |
|
rngqiprngim.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
12 |
|
rngqiprngim.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngho |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RngHom 𝑃 ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ ( 𝐶 × 𝐼 ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfo |
⊢ ( 𝜑 → 𝐹 : 𝐵 –onto→ ( 𝐶 × 𝐼 ) ) |
16 |
|
df-f1o |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ ( 𝐶 × 𝐼 ) ↔ ( 𝐹 : 𝐵 –1-1→ ( 𝐶 × 𝐼 ) ∧ 𝐹 : 𝐵 –onto→ ( 𝐶 × 𝐼 ) ) ) |
17 |
14 15 16
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ ( 𝐶 × 𝐼 ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqipbas |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( 𝐶 × 𝐼 ) ) |
19 |
18
|
f1oeq3d |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑃 ) ↔ 𝐹 : 𝐵 –1-1-onto→ ( 𝐶 × 𝐼 ) ) ) |
20 |
17 19
|
mpbird |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑃 ) ) |
21 |
11
|
ovexi |
⊢ 𝑃 ∈ V |
22 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
23 |
5 22
|
isrngim2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑃 ∈ V ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑃 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑃 ) ∧ 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑃 ) ) ) ) |
24 |
1 21 23
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑅 RngIso 𝑃 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑃 ) ∧ 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑃 ) ) ) ) |
25 |
13 20 24
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RngIso 𝑃 ) ) |