Metamath Proof Explorer


Theorem rngqiprngim

Description: F is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
rngqiprngim.q 𝑄 = ( 𝑅 /s )
rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
Assertion rngqiprngim ( 𝜑𝐹 ∈ ( 𝑅 RngIso 𝑃 ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngim.q 𝑄 = ( 𝑅 /s )
10 rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
11 rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
12 rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
13 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngho ( 𝜑𝐹 ∈ ( 𝑅 RngHom 𝑃 ) )
14 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimf1 ( 𝜑𝐹 : 𝐵1-1→ ( 𝐶 × 𝐼 ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfo ( 𝜑𝐹 : 𝐵onto→ ( 𝐶 × 𝐼 ) )
16 df-f1o ( 𝐹 : 𝐵1-1-onto→ ( 𝐶 × 𝐼 ) ↔ ( 𝐹 : 𝐵1-1→ ( 𝐶 × 𝐼 ) ∧ 𝐹 : 𝐵onto→ ( 𝐶 × 𝐼 ) ) )
17 14 15 16 sylanbrc ( 𝜑𝐹 : 𝐵1-1-onto→ ( 𝐶 × 𝐼 ) )
18 1 2 3 4 5 6 7 8 9 10 11 rngqipbas ( 𝜑 → ( Base ‘ 𝑃 ) = ( 𝐶 × 𝐼 ) )
19 18 f1oeq3d ( 𝜑 → ( 𝐹 : 𝐵1-1-onto→ ( Base ‘ 𝑃 ) ↔ 𝐹 : 𝐵1-1-onto→ ( 𝐶 × 𝐼 ) ) )
20 17 19 mpbird ( 𝜑𝐹 : 𝐵1-1-onto→ ( Base ‘ 𝑃 ) )
21 11 ovexi 𝑃 ∈ V
22 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
23 5 22 isrngim2 ( ( 𝑅 ∈ Rng ∧ 𝑃 ∈ V ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑃 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑃 ) ∧ 𝐹 : 𝐵1-1-onto→ ( Base ‘ 𝑃 ) ) ) )
24 1 21 23 sylancl ( 𝜑 → ( 𝐹 ∈ ( 𝑅 RngIso 𝑃 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑃 ) ∧ 𝐹 : 𝐵1-1-onto→ ( Base ‘ 𝑃 ) ) ) )
25 13 20 24 mpbir2and ( 𝜑𝐹 ∈ ( 𝑅 RngIso 𝑃 ) )