Metamath Proof Explorer


Theorem rng2idl1cntr

Description: The unity of a two-sided ideal of a non-unital ring is central, i.e., an element of the center of the multiplicative semigroup of the non-unital ring. This is part of the proof given in MathOverflow, which seems to be sufficient to show that F given below (see rngqiprngimf ) is an isomorphism. In our proof, however we show that F is linear regarding the multiplication ( rngqiprnglin ) via rngqiprnglinlem1 instead. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses rng2idl1cntr.r
|- ( ph -> R e. Rng )
rng2idl1cntr.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idl1cntr.j
|- J = ( R |`s I )
rng2idl1cntr.u
|- ( ph -> J e. Ring )
rng2idl1cntr.1
|- .1. = ( 1r ` J )
rng2idl1cntr.m
|- M = ( mulGrp ` R )
Assertion rng2idl1cntr
|- ( ph -> .1. e. ( Cntr ` M ) )

Proof

Step Hyp Ref Expression
1 rng2idl1cntr.r
 |-  ( ph -> R e. Rng )
2 rng2idl1cntr.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idl1cntr.j
 |-  J = ( R |`s I )
4 rng2idl1cntr.u
 |-  ( ph -> J e. Ring )
5 rng2idl1cntr.1
 |-  .1. = ( 1r ` J )
6 rng2idl1cntr.m
 |-  M = ( mulGrp ` R )
7 eqid
 |-  ( Base ` R ) = ( Base ` R )
8 3 7 ressbasss
 |-  ( Base ` J ) C_ ( Base ` R )
9 eqid
 |-  ( Base ` J ) = ( Base ` J )
10 9 5 ringidcl
 |-  ( J e. Ring -> .1. e. ( Base ` J ) )
11 4 10 syl
 |-  ( ph -> .1. e. ( Base ` J ) )
12 8 11 sselid
 |-  ( ph -> .1. e. ( Base ` R ) )
13 1 adantr
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> R e. Rng )
14 12 adantr
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> .1. e. ( Base ` R ) )
15 simpr
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> x e. ( Base ` R ) )
16 eqid
 |-  ( .r ` R ) = ( .r ` R )
17 7 16 rngass
 |-  ( ( R e. Rng /\ ( .1. e. ( Base ` R ) /\ x e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) ) -> ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) )
18 13 14 15 14 17 syl13anc
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) )
19 eqid
 |-  ( .r ` J ) = ( .r ` J )
20 4 adantr
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> J e. Ring )
21 1 2 3 4 7 16 5 rngqiprngghmlem1
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( .1. ( .r ` R ) x ) e. ( Base ` J ) )
22 9 19 5 20 21 ringridmd
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( ( .1. ( .r ` R ) x ) ( .r ` J ) .1. ) = ( .1. ( .r ` R ) x ) )
23 3 16 ressmulr
 |-  ( I e. ( 2Ideal ` R ) -> ( .r ` R ) = ( .r ` J ) )
24 2 23 syl
 |-  ( ph -> ( .r ` R ) = ( .r ` J ) )
25 24 oveqd
 |-  ( ph -> ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( ( .1. ( .r ` R ) x ) ( .r ` J ) .1. ) )
26 25 eqeq1d
 |-  ( ph -> ( ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( .1. ( .r ` R ) x ) <-> ( ( .1. ( .r ` R ) x ) ( .r ` J ) .1. ) = ( .1. ( .r ` R ) x ) ) )
27 26 adantr
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( .1. ( .r ` R ) x ) <-> ( ( .1. ( .r ` R ) x ) ( .r ` J ) .1. ) = ( .1. ( .r ` R ) x ) ) )
28 22 27 mpbird
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( .1. ( .r ` R ) x ) )
29 2 2idllidld
 |-  ( ph -> I e. ( LIdeal ` R ) )
30 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
31 7 30 lidlss
 |-  ( I e. ( LIdeal ` R ) -> I C_ ( Base ` R ) )
32 3 7 ressbas2
 |-  ( I C_ ( Base ` R ) -> I = ( Base ` J ) )
33 32 eqcomd
 |-  ( I C_ ( Base ` R ) -> ( Base ` J ) = I )
34 29 31 33 3syl
 |-  ( ph -> ( Base ` J ) = I )
35 34 29 eqeltrd
 |-  ( ph -> ( Base ` J ) e. ( LIdeal ` R ) )
36 2 3 9 2idlbas
 |-  ( ph -> ( Base ` J ) = I )
37 ringrng
 |-  ( J e. Ring -> J e. Rng )
38 4 37 syl
 |-  ( ph -> J e. Rng )
39 3 38 eqeltrrid
 |-  ( ph -> ( R |`s I ) e. Rng )
40 1 2 39 rng2idlsubrng
 |-  ( ph -> I e. ( SubRng ` R ) )
41 36 40 eqeltrd
 |-  ( ph -> ( Base ` J ) e. ( SubRng ` R ) )
42 subrngsubg
 |-  ( ( Base ` J ) e. ( SubRng ` R ) -> ( Base ` J ) e. ( SubGrp ` R ) )
43 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
44 43 subg0cl
 |-  ( ( Base ` J ) e. ( SubGrp ` R ) -> ( 0g ` R ) e. ( Base ` J ) )
45 41 42 44 3syl
 |-  ( ph -> ( 0g ` R ) e. ( Base ` J ) )
46 1 35 45 3jca
 |-  ( ph -> ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` R ) /\ ( 0g ` R ) e. ( Base ` J ) ) )
47 11 anim1ci
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( x e. ( Base ` R ) /\ .1. e. ( Base ` J ) ) )
48 43 7 16 30 rnglidlmcl
 |-  ( ( ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` R ) /\ ( 0g ` R ) e. ( Base ` J ) ) /\ ( x e. ( Base ` R ) /\ .1. e. ( Base ` J ) ) ) -> ( x ( .r ` R ) .1. ) e. ( Base ` J ) )
49 46 47 48 syl2an2r
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) .1. ) e. ( Base ` J ) )
50 9 19 5 20 49 ringlidmd
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( .1. ( .r ` J ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) )
51 24 oveqd
 |-  ( ph -> ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) = ( .1. ( .r ` J ) ( x ( .r ` R ) .1. ) ) )
52 51 eqeq1d
 |-  ( ph -> ( ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) <-> ( .1. ( .r ` J ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) ) )
53 52 adantr
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) <-> ( .1. ( .r ` J ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) ) )
54 50 53 mpbird
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) )
55 18 28 54 3eqtr3d
 |-  ( ( ph /\ x e. ( Base ` R ) ) -> ( .1. ( .r ` R ) x ) = ( x ( .r ` R ) .1. ) )
56 55 ralrimiva
 |-  ( ph -> A. x e. ( Base ` R ) ( .1. ( .r ` R ) x ) = ( x ( .r ` R ) .1. ) )
57 ssidd
 |-  ( ph -> ( Base ` R ) C_ ( Base ` R ) )
58 6 7 mgpbas
 |-  ( Base ` R ) = ( Base ` M )
59 6 16 mgpplusg
 |-  ( .r ` R ) = ( +g ` M )
60 eqid
 |-  ( Cntz ` M ) = ( Cntz ` M )
61 58 59 60 elcntz
 |-  ( ( Base ` R ) C_ ( Base ` R ) -> ( .1. e. ( ( Cntz ` M ) ` ( Base ` R ) ) <-> ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( .1. ( .r ` R ) x ) = ( x ( .r ` R ) .1. ) ) ) )
62 57 61 syl
 |-  ( ph -> ( .1. e. ( ( Cntz ` M ) ` ( Base ` R ) ) <-> ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( .1. ( .r ` R ) x ) = ( x ( .r ` R ) .1. ) ) ) )
63 12 56 62 mpbir2and
 |-  ( ph -> .1. e. ( ( Cntz ` M ) ` ( Base ` R ) ) )
64 58 60 cntrval
 |-  ( ( Cntz ` M ) ` ( Base ` R ) ) = ( Cntr ` M )
65 63 64 eleqtrdi
 |-  ( ph -> .1. e. ( Cntr ` M ) )