Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idl1cntr.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idl1cntr.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idl1cntr.j |
|- J = ( R |`s I ) |
4 |
|
rng2idl1cntr.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idl1cntr.1 |
|- .1. = ( 1r ` J ) |
6 |
|
rng2idl1cntr.m |
|- M = ( mulGrp ` R ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
3 7
|
ressbasss |
|- ( Base ` J ) C_ ( Base ` R ) |
9 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
10 |
9 5
|
ringidcl |
|- ( J e. Ring -> .1. e. ( Base ` J ) ) |
11 |
4 10
|
syl |
|- ( ph -> .1. e. ( Base ` J ) ) |
12 |
8 11
|
sselid |
|- ( ph -> .1. e. ( Base ` R ) ) |
13 |
1
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> R e. Rng ) |
14 |
12
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> .1. e. ( Base ` R ) ) |
15 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
16 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
17 |
7 16
|
rngass |
|- ( ( R e. Rng /\ ( .1. e. ( Base ` R ) /\ x e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) ) -> ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) ) |
18 |
13 14 15 14 17
|
syl13anc |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) ) |
19 |
|
eqid |
|- ( .r ` J ) = ( .r ` J ) |
20 |
4
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> J e. Ring ) |
21 |
1 2 3 4 7 16 5
|
rngqiprngghmlem1 |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( .1. ( .r ` R ) x ) e. ( Base ` J ) ) |
22 |
9 19 5 20 21
|
ringridmd |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( .1. ( .r ` R ) x ) ( .r ` J ) .1. ) = ( .1. ( .r ` R ) x ) ) |
23 |
3 16
|
ressmulr |
|- ( I e. ( 2Ideal ` R ) -> ( .r ` R ) = ( .r ` J ) ) |
24 |
2 23
|
syl |
|- ( ph -> ( .r ` R ) = ( .r ` J ) ) |
25 |
24
|
oveqd |
|- ( ph -> ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( ( .1. ( .r ` R ) x ) ( .r ` J ) .1. ) ) |
26 |
25
|
eqeq1d |
|- ( ph -> ( ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( .1. ( .r ` R ) x ) <-> ( ( .1. ( .r ` R ) x ) ( .r ` J ) .1. ) = ( .1. ( .r ` R ) x ) ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( .1. ( .r ` R ) x ) <-> ( ( .1. ( .r ` R ) x ) ( .r ` J ) .1. ) = ( .1. ( .r ` R ) x ) ) ) |
28 |
22 27
|
mpbird |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( .1. ( .r ` R ) x ) ( .r ` R ) .1. ) = ( .1. ( .r ` R ) x ) ) |
29 |
2
|
2idllidld |
|- ( ph -> I e. ( LIdeal ` R ) ) |
30 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
31 |
7 30
|
lidlss |
|- ( I e. ( LIdeal ` R ) -> I C_ ( Base ` R ) ) |
32 |
3 7
|
ressbas2 |
|- ( I C_ ( Base ` R ) -> I = ( Base ` J ) ) |
33 |
32
|
eqcomd |
|- ( I C_ ( Base ` R ) -> ( Base ` J ) = I ) |
34 |
29 31 33
|
3syl |
|- ( ph -> ( Base ` J ) = I ) |
35 |
34 29
|
eqeltrd |
|- ( ph -> ( Base ` J ) e. ( LIdeal ` R ) ) |
36 |
2 3 9
|
2idlbas |
|- ( ph -> ( Base ` J ) = I ) |
37 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
38 |
4 37
|
syl |
|- ( ph -> J e. Rng ) |
39 |
3 38
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
40 |
1 2 39
|
rng2idlsubrng |
|- ( ph -> I e. ( SubRng ` R ) ) |
41 |
36 40
|
eqeltrd |
|- ( ph -> ( Base ` J ) e. ( SubRng ` R ) ) |
42 |
|
subrngsubg |
|- ( ( Base ` J ) e. ( SubRng ` R ) -> ( Base ` J ) e. ( SubGrp ` R ) ) |
43 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
44 |
43
|
subg0cl |
|- ( ( Base ` J ) e. ( SubGrp ` R ) -> ( 0g ` R ) e. ( Base ` J ) ) |
45 |
41 42 44
|
3syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` J ) ) |
46 |
1 35 45
|
3jca |
|- ( ph -> ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` R ) /\ ( 0g ` R ) e. ( Base ` J ) ) ) |
47 |
11
|
anim1ci |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x e. ( Base ` R ) /\ .1. e. ( Base ` J ) ) ) |
48 |
43 7 16 30
|
rnglidlmcl |
|- ( ( ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` R ) /\ ( 0g ` R ) e. ( Base ` J ) ) /\ ( x e. ( Base ` R ) /\ .1. e. ( Base ` J ) ) ) -> ( x ( .r ` R ) .1. ) e. ( Base ` J ) ) |
49 |
46 47 48
|
syl2an2r |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) .1. ) e. ( Base ` J ) ) |
50 |
9 19 5 20 49
|
ringlidmd |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( .1. ( .r ` J ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) ) |
51 |
24
|
oveqd |
|- ( ph -> ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) = ( .1. ( .r ` J ) ( x ( .r ` R ) .1. ) ) ) |
52 |
51
|
eqeq1d |
|- ( ph -> ( ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) <-> ( .1. ( .r ` J ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) ) ) |
53 |
52
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) <-> ( .1. ( .r ` J ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) ) ) |
54 |
50 53
|
mpbird |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( .1. ( .r ` R ) ( x ( .r ` R ) .1. ) ) = ( x ( .r ` R ) .1. ) ) |
55 |
18 28 54
|
3eqtr3d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( .1. ( .r ` R ) x ) = ( x ( .r ` R ) .1. ) ) |
56 |
55
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` R ) ( .1. ( .r ` R ) x ) = ( x ( .r ` R ) .1. ) ) |
57 |
|
ssidd |
|- ( ph -> ( Base ` R ) C_ ( Base ` R ) ) |
58 |
6 7
|
mgpbas |
|- ( Base ` R ) = ( Base ` M ) |
59 |
6 16
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
60 |
|
eqid |
|- ( Cntz ` M ) = ( Cntz ` M ) |
61 |
58 59 60
|
elcntz |
|- ( ( Base ` R ) C_ ( Base ` R ) -> ( .1. e. ( ( Cntz ` M ) ` ( Base ` R ) ) <-> ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( .1. ( .r ` R ) x ) = ( x ( .r ` R ) .1. ) ) ) ) |
62 |
57 61
|
syl |
|- ( ph -> ( .1. e. ( ( Cntz ` M ) ` ( Base ` R ) ) <-> ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( .1. ( .r ` R ) x ) = ( x ( .r ` R ) .1. ) ) ) ) |
63 |
12 56 62
|
mpbir2and |
|- ( ph -> .1. e. ( ( Cntz ` M ) ` ( Base ` R ) ) ) |
64 |
58 60
|
cntrval |
|- ( ( Cntz ` M ) ` ( Base ` R ) ) = ( Cntr ` M ) |
65 |
63 64
|
eleqtrdi |
|- ( ph -> .1. e. ( Cntr ` M ) ) |