Metamath Proof Explorer


Theorem rngringbdlem1

Description: In a unital ring, the quotient of the ring and a two-sided ideal is unital. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses rngringbd.r
|- ( ph -> R e. Rng )
rngringbd.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rngringbd.j
|- J = ( R |`s I )
rngringbd.u
|- ( ph -> J e. Ring )
rngringbd.q
|- Q = ( R /s ( R ~QG I ) )
Assertion rngringbdlem1
|- ( ( ph /\ R e. Ring ) -> Q e. Ring )

Proof

Step Hyp Ref Expression
1 rngringbd.r
 |-  ( ph -> R e. Rng )
2 rngringbd.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rngringbd.j
 |-  J = ( R |`s I )
4 rngringbd.u
 |-  ( ph -> J e. Ring )
5 rngringbd.q
 |-  Q = ( R /s ( R ~QG I ) )
6 2 anim1ci
 |-  ( ( ph /\ R e. Ring ) -> ( R e. Ring /\ I e. ( 2Ideal ` R ) ) )
7 eqid
 |-  ( 2Ideal ` R ) = ( 2Ideal ` R )
8 5 7 qusring
 |-  ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> Q e. Ring )
9 6 8 syl
 |-  ( ( ph /\ R e. Ring ) -> Q e. Ring )