Description: In a unital ring, the quotient of the ring and a two-sided ideal is unital. (Contributed by AV, 20-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngringbd.r | |- ( ph -> R e. Rng ) | |
| rngringbd.i | |- ( ph -> I e. ( 2Ideal ` R ) ) | ||
| rngringbd.j | |- J = ( R |`s I ) | ||
| rngringbd.u | |- ( ph -> J e. Ring ) | ||
| rngringbd.q | |- Q = ( R /s ( R ~QG I ) ) | ||
| Assertion | rngringbdlem1 | |- ( ( ph /\ R e. Ring ) -> Q e. Ring ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rngringbd.r | |- ( ph -> R e. Rng ) | |
| 2 | rngringbd.i | |- ( ph -> I e. ( 2Ideal ` R ) ) | |
| 3 | rngringbd.j | |- J = ( R |`s I ) | |
| 4 | rngringbd.u | |- ( ph -> J e. Ring ) | |
| 5 | rngringbd.q | |- Q = ( R /s ( R ~QG I ) ) | |
| 6 | 2 | anim1ci | |- ( ( ph /\ R e. Ring ) -> ( R e. Ring /\ I e. ( 2Ideal ` R ) ) ) | 
| 7 | eqid | |- ( 2Ideal ` R ) = ( 2Ideal ` R ) | |
| 8 | 5 7 | qusring | |- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> Q e. Ring ) | 
| 9 | 6 8 | syl | |- ( ( ph /\ R e. Ring ) -> Q e. Ring ) |