Description: In a unital ring, the quotient of the ring and a two-sided ideal is unital. (Contributed by AV, 20-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngringbd.r | |- ( ph -> R e. Rng ) |
|
rngringbd.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
||
rngringbd.j | |- J = ( R |`s I ) |
||
rngringbd.u | |- ( ph -> J e. Ring ) |
||
rngringbd.q | |- Q = ( R /s ( R ~QG I ) ) |
||
Assertion | rngringbdlem1 | |- ( ( ph /\ R e. Ring ) -> Q e. Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngringbd.r | |- ( ph -> R e. Rng ) |
|
2 | rngringbd.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
3 | rngringbd.j | |- J = ( R |`s I ) |
|
4 | rngringbd.u | |- ( ph -> J e. Ring ) |
|
5 | rngringbd.q | |- Q = ( R /s ( R ~QG I ) ) |
|
6 | 2 | anim1ci | |- ( ( ph /\ R e. Ring ) -> ( R e. Ring /\ I e. ( 2Ideal ` R ) ) ) |
7 | eqid | |- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
|
8 | 5 7 | qusring | |- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> Q e. Ring ) |
9 | 6 8 | syl | |- ( ( ph /\ R e. Ring ) -> Q e. Ring ) |