Metamath Proof Explorer


Theorem rngringbdlem1

Description: In a unital ring, the quotient of the ring and a two-sided ideal is unital. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses rngringbd.r φRRng
rngringbd.i φI2IdealR
rngringbd.j J=R𝑠I
rngringbd.u φJRing
rngringbd.q Q=R/𝑠R~QGI
Assertion rngringbdlem1 φRRingQRing

Proof

Step Hyp Ref Expression
1 rngringbd.r φRRng
2 rngringbd.i φI2IdealR
3 rngringbd.j J=R𝑠I
4 rngringbd.u φJRing
5 rngringbd.q Q=R/𝑠R~QGI
6 2 anim1ci φRRingRRingI2IdealR
7 eqid 2IdealR=2IdealR
8 5 7 qusring RRingI2IdealRQRing
9 6 8 syl φRRingQRing