Metamath Proof Explorer


Theorem rngringbdlem1

Description: In a unital ring, the quotient of the ring and a two-sided ideal is unital. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses rngringbd.r φ R Rng
rngringbd.i φ I 2Ideal R
rngringbd.j J = R 𝑠 I
rngringbd.u φ J Ring
rngringbd.q Q = R / 𝑠 R ~ QG I
Assertion rngringbdlem1 φ R Ring Q Ring

Proof

Step Hyp Ref Expression
1 rngringbd.r φ R Rng
2 rngringbd.i φ I 2Ideal R
3 rngringbd.j J = R 𝑠 I
4 rngringbd.u φ J Ring
5 rngringbd.q Q = R / 𝑠 R ~ QG I
6 2 anim1ci φ R Ring R Ring I 2Ideal R
7 eqid 2Ideal R = 2Ideal R
8 5 7 qusring R Ring I 2Ideal R Q Ring
9 6 8 syl φ R Ring Q Ring