Metamath Proof Explorer
Description: In a unital ring, the quotient of the ring and a two-sided ideal is
unital. (Contributed by AV, 20-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
rngringbd.r |
|
|
|
rngringbd.i |
|
|
|
rngringbd.j |
|
|
|
rngringbd.u |
|
|
|
rngringbd.q |
|
|
Assertion |
rngringbdlem1 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rngringbd.r |
|
2 |
|
rngringbd.i |
|
3 |
|
rngringbd.j |
|
4 |
|
rngringbd.u |
|
5 |
|
rngringbd.q |
|
6 |
2
|
anim1ci |
|
7 |
|
eqid |
|
8 |
5 7
|
qusring |
|
9 |
6 8
|
syl |
|