Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIsom S ) ) -> S e. Rng ) |
2 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
3 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
4 |
2 3
|
rngisomfv1 |
|- ( ( R e. Ring /\ F e. ( R RngIsom S ) ) -> ( F ` ( 1r ` R ) ) e. ( Base ` S ) ) |
5 |
4
|
3adant2 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIsom S ) ) -> ( F ` ( 1r ` R ) ) e. ( Base ` S ) ) |
6 |
|
oveq1 |
|- ( i = ( F ` ( 1r ` R ) ) -> ( i ( .r ` S ) x ) = ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) ) |
7 |
6
|
eqeq1d |
|- ( i = ( F ` ( 1r ` R ) ) -> ( ( i ( .r ` S ) x ) = x <-> ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x ) ) |
8 |
|
oveq2 |
|- ( i = ( F ` ( 1r ` R ) ) -> ( x ( .r ` S ) i ) = ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) ) |
9 |
8
|
eqeq1d |
|- ( i = ( F ` ( 1r ` R ) ) -> ( ( x ( .r ` S ) i ) = x <-> ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) |
10 |
7 9
|
anbi12d |
|- ( i = ( F ` ( 1r ` R ) ) -> ( ( ( i ( .r ` S ) x ) = x /\ ( x ( .r ` S ) i ) = x ) <-> ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) ) |
11 |
10
|
ralbidv |
|- ( i = ( F ` ( 1r ` R ) ) -> ( A. x e. ( Base ` S ) ( ( i ( .r ` S ) x ) = x /\ ( x ( .r ` S ) i ) = x ) <-> A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) ) |
12 |
11
|
adantl |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIsom S ) ) /\ i = ( F ` ( 1r ` R ) ) ) -> ( A. x e. ( Base ` S ) ( ( i ( .r ` S ) x ) = x /\ ( x ( .r ` S ) i ) = x ) <-> A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) ) |
13 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
14 |
2 3 13
|
rngisom1 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIsom S ) ) -> A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) |
15 |
5 12 14
|
rspcedvd |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIsom S ) ) -> E. i e. ( Base ` S ) A. x e. ( Base ` S ) ( ( i ( .r ` S ) x ) = x /\ ( x ( .r ` S ) i ) = x ) ) |
16 |
3 13
|
isringrng |
|- ( S e. Ring <-> ( S e. Rng /\ E. i e. ( Base ` S ) A. x e. ( Base ` S ) ( ( i ( .r ` S ) x ) = x /\ ( x ( .r ` S ) i ) = x ) ) ) |
17 |
1 15 16
|
sylanbrc |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIsom S ) ) -> S e. Ring ) |