Step |
Hyp |
Ref |
Expression |
1 |
|
rngisom1.1 |
|- .1. = ( 1r ` R ) |
2 |
|
rngisom1.b |
|- B = ( Base ` S ) |
3 |
|
rngisom1.t |
|- .x. = ( .r ` S ) |
4 |
|
rngimcnv |
|- ( F e. ( R RngIso S ) -> `' F e. ( S RngIso R ) ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
2 5
|
rngimrnghm |
|- ( `' F e. ( S RngIso R ) -> `' F e. ( S RngHom R ) ) |
7 |
4 6
|
syl |
|- ( F e. ( R RngIso S ) -> `' F e. ( S RngHom R ) ) |
8 |
7
|
3ad2ant3 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> `' F e. ( S RngHom R ) ) |
9 |
8
|
adantr |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> `' F e. ( S RngHom R ) ) |
10 |
1 2
|
rngisomfv1 |
|- ( ( R e. Ring /\ F e. ( R RngIso S ) ) -> ( F ` .1. ) e. B ) |
11 |
10
|
3adant2 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( F ` .1. ) e. B ) |
12 |
11
|
adantr |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` .1. ) e. B ) |
13 |
|
simpr |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> x e. B ) |
14 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
15 |
2 3 14
|
rnghmmul |
|- ( ( `' F e. ( S RngHom R ) /\ ( F ` .1. ) e. B /\ x e. B ) -> ( `' F ` ( ( F ` .1. ) .x. x ) ) = ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) ) |
16 |
9 12 13 15
|
syl3anc |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( `' F ` ( ( F ` .1. ) .x. x ) ) = ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) ) |
17 |
16
|
fveq2d |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( `' F ` ( ( F ` .1. ) .x. x ) ) ) = ( F ` ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) ) ) |
18 |
5 2
|
rngimf1o |
|- ( F e. ( R RngIso S ) -> F : ( Base ` R ) -1-1-onto-> B ) |
19 |
18
|
3ad2ant3 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> F : ( Base ` R ) -1-1-onto-> B ) |
20 |
|
simpl2 |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> S e. Rng ) |
21 |
2 3
|
rngcl |
|- ( ( S e. Rng /\ ( F ` .1. ) e. B /\ x e. B ) -> ( ( F ` .1. ) .x. x ) e. B ) |
22 |
20 12 13 21
|
syl3anc |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( F ` .1. ) .x. x ) e. B ) |
23 |
|
f1ocnvfv2 |
|- ( ( F : ( Base ` R ) -1-1-onto-> B /\ ( ( F ` .1. ) .x. x ) e. B ) -> ( F ` ( `' F ` ( ( F ` .1. ) .x. x ) ) ) = ( ( F ` .1. ) .x. x ) ) |
24 |
19 22 23
|
syl2an2r |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( `' F ` ( ( F ` .1. ) .x. x ) ) ) = ( ( F ` .1. ) .x. x ) ) |
25 |
5 1
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
26 |
25
|
3ad2ant1 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> .1. e. ( Base ` R ) ) |
27 |
19 26
|
jca |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( F : ( Base ` R ) -1-1-onto-> B /\ .1. e. ( Base ` R ) ) ) |
28 |
27
|
adantr |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F : ( Base ` R ) -1-1-onto-> B /\ .1. e. ( Base ` R ) ) ) |
29 |
|
f1ocnvfv1 |
|- ( ( F : ( Base ` R ) -1-1-onto-> B /\ .1. e. ( Base ` R ) ) -> ( `' F ` ( F ` .1. ) ) = .1. ) |
30 |
28 29
|
syl |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( `' F ` ( F ` .1. ) ) = .1. ) |
31 |
30
|
oveq1d |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) = ( .1. ( .r ` R ) ( `' F ` x ) ) ) |
32 |
|
simpl1 |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> R e. Ring ) |
33 |
2 5
|
rngimf1o |
|- ( `' F e. ( S RngIso R ) -> `' F : B -1-1-onto-> ( Base ` R ) ) |
34 |
|
f1of |
|- ( `' F : B -1-1-onto-> ( Base ` R ) -> `' F : B --> ( Base ` R ) ) |
35 |
33 34
|
syl |
|- ( `' F e. ( S RngIso R ) -> `' F : B --> ( Base ` R ) ) |
36 |
4 35
|
syl |
|- ( F e. ( R RngIso S ) -> `' F : B --> ( Base ` R ) ) |
37 |
36
|
3ad2ant3 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> `' F : B --> ( Base ` R ) ) |
38 |
37
|
ffvelcdmda |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( `' F ` x ) e. ( Base ` R ) ) |
39 |
5 14 1 32 38
|
ringlidmd |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( .1. ( .r ` R ) ( `' F ` x ) ) = ( `' F ` x ) ) |
40 |
31 39
|
eqtrd |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) = ( `' F ` x ) ) |
41 |
40
|
fveq2d |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) ) = ( F ` ( `' F ` x ) ) ) |
42 |
|
f1ocnvfv2 |
|- ( ( F : ( Base ` R ) -1-1-onto-> B /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) |
43 |
19 42
|
sylan |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) |
44 |
41 43
|
eqtrd |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) ) = x ) |
45 |
17 24 44
|
3eqtr3d |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( F ` .1. ) .x. x ) = x ) |
46 |
4
|
3ad2ant3 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> `' F e. ( S RngIso R ) ) |
47 |
46 6
|
syl |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> `' F e. ( S RngHom R ) ) |
48 |
47
|
adantr |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> `' F e. ( S RngHom R ) ) |
49 |
2 3 14
|
rnghmmul |
|- ( ( `' F e. ( S RngHom R ) /\ x e. B /\ ( F ` .1. ) e. B ) -> ( `' F ` ( x .x. ( F ` .1. ) ) ) = ( ( `' F ` x ) ( .r ` R ) ( `' F ` ( F ` .1. ) ) ) ) |
50 |
48 13 12 49
|
syl3anc |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( `' F ` ( x .x. ( F ` .1. ) ) ) = ( ( `' F ` x ) ( .r ` R ) ( `' F ` ( F ` .1. ) ) ) ) |
51 |
30
|
oveq2d |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( `' F ` x ) ( .r ` R ) ( `' F ` ( F ` .1. ) ) ) = ( ( `' F ` x ) ( .r ` R ) .1. ) ) |
52 |
5 14 1 32 38
|
ringridmd |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( `' F ` x ) ( .r ` R ) .1. ) = ( `' F ` x ) ) |
53 |
50 51 52
|
3eqtrd |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( `' F ` ( x .x. ( F ` .1. ) ) ) = ( `' F ` x ) ) |
54 |
53
|
fveq2d |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( `' F ` ( x .x. ( F ` .1. ) ) ) ) = ( F ` ( `' F ` x ) ) ) |
55 |
2 3
|
rngcl |
|- ( ( S e. Rng /\ x e. B /\ ( F ` .1. ) e. B ) -> ( x .x. ( F ` .1. ) ) e. B ) |
56 |
20 13 12 55
|
syl3anc |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( x .x. ( F ` .1. ) ) e. B ) |
57 |
|
f1ocnvfv2 |
|- ( ( F : ( Base ` R ) -1-1-onto-> B /\ ( x .x. ( F ` .1. ) ) e. B ) -> ( F ` ( `' F ` ( x .x. ( F ` .1. ) ) ) ) = ( x .x. ( F ` .1. ) ) ) |
58 |
19 56 57
|
syl2an2r |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( `' F ` ( x .x. ( F ` .1. ) ) ) ) = ( x .x. ( F ` .1. ) ) ) |
59 |
54 58 43
|
3eqtr3d |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( x .x. ( F ` .1. ) ) = x ) |
60 |
45 59
|
jca |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( ( F ` .1. ) .x. x ) = x /\ ( x .x. ( F ` .1. ) ) = x ) ) |
61 |
60
|
ralrimiva |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> A. x e. B ( ( ( F ` .1. ) .x. x ) = x /\ ( x .x. ( F ` .1. ) ) = x ) ) |