Metamath Proof Explorer


Theorem rngisom1

Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025)

Ref Expression
Hypotheses rngisom1.1 1˙=1R
rngisom1.b B=BaseS
rngisom1.t ·˙=S
Assertion rngisom1 RRingSRngFRRngIsomSxBF1˙·˙x=xx·˙F1˙=x

Proof

Step Hyp Ref Expression
1 rngisom1.1 1˙=1R
2 rngisom1.b B=BaseS
3 rngisom1.t ·˙=S
4 rngimcnv FRRngIsomSF-1SRngIsomR
5 eqid BaseR=BaseR
6 2 5 rngimrnghm F-1SRngIsomRF-1SRngHomoR
7 4 6 syl FRRngIsomSF-1SRngHomoR
8 7 3ad2ant3 RRingSRngFRRngIsomSF-1SRngHomoR
9 8 adantr RRingSRngFRRngIsomSxBF-1SRngHomoR
10 1 2 rngisomfv1 RRingFRRngIsomSF1˙B
11 10 3adant2 RRingSRngFRRngIsomSF1˙B
12 11 adantr RRingSRngFRRngIsomSxBF1˙B
13 simpr RRingSRngFRRngIsomSxBxB
14 eqid R=R
15 2 3 14 rnghmmul F-1SRngHomoRF1˙BxBF-1F1˙·˙x=F-1F1˙RF-1x
16 9 12 13 15 syl3anc RRingSRngFRRngIsomSxBF-1F1˙·˙x=F-1F1˙RF-1x
17 16 fveq2d RRingSRngFRRngIsomSxBFF-1F1˙·˙x=FF-1F1˙RF-1x
18 5 2 rngimf1o FRRngIsomSF:BaseR1-1 ontoB
19 18 3ad2ant3 RRingSRngFRRngIsomSF:BaseR1-1 ontoB
20 simpl2 RRingSRngFRRngIsomSxBSRng
21 2 3 rngcl SRngF1˙BxBF1˙·˙xB
22 20 12 13 21 syl3anc RRingSRngFRRngIsomSxBF1˙·˙xB
23 f1ocnvfv2 F:BaseR1-1 ontoBF1˙·˙xBFF-1F1˙·˙x=F1˙·˙x
24 19 22 23 syl2an2r RRingSRngFRRngIsomSxBFF-1F1˙·˙x=F1˙·˙x
25 5 1 ringidcl RRing1˙BaseR
26 25 3ad2ant1 RRingSRngFRRngIsomS1˙BaseR
27 19 26 jca RRingSRngFRRngIsomSF:BaseR1-1 ontoB1˙BaseR
28 27 adantr RRingSRngFRRngIsomSxBF:BaseR1-1 ontoB1˙BaseR
29 f1ocnvfv1 F:BaseR1-1 ontoB1˙BaseRF-1F1˙=1˙
30 28 29 syl RRingSRngFRRngIsomSxBF-1F1˙=1˙
31 30 oveq1d RRingSRngFRRngIsomSxBF-1F1˙RF-1x=1˙RF-1x
32 simpl1 RRingSRngFRRngIsomSxBRRing
33 2 5 rngimf1o F-1SRngIsomRF-1:B1-1 ontoBaseR
34 f1of F-1:B1-1 ontoBaseRF-1:BBaseR
35 33 34 syl F-1SRngIsomRF-1:BBaseR
36 4 35 syl FRRngIsomSF-1:BBaseR
37 36 3ad2ant3 RRingSRngFRRngIsomSF-1:BBaseR
38 37 ffvelcdmda RRingSRngFRRngIsomSxBF-1xBaseR
39 5 14 1 32 38 ringlidmd RRingSRngFRRngIsomSxB1˙RF-1x=F-1x
40 31 39 eqtrd RRingSRngFRRngIsomSxBF-1F1˙RF-1x=F-1x
41 40 fveq2d RRingSRngFRRngIsomSxBFF-1F1˙RF-1x=FF-1x
42 f1ocnvfv2 F:BaseR1-1 ontoBxBFF-1x=x
43 19 42 sylan RRingSRngFRRngIsomSxBFF-1x=x
44 41 43 eqtrd RRingSRngFRRngIsomSxBFF-1F1˙RF-1x=x
45 17 24 44 3eqtr3d RRingSRngFRRngIsomSxBF1˙·˙x=x
46 4 3ad2ant3 RRingSRngFRRngIsomSF-1SRngIsomR
47 46 6 syl RRingSRngFRRngIsomSF-1SRngHomoR
48 47 adantr RRingSRngFRRngIsomSxBF-1SRngHomoR
49 2 3 14 rnghmmul F-1SRngHomoRxBF1˙BF-1x·˙F1˙=F-1xRF-1F1˙
50 48 13 12 49 syl3anc RRingSRngFRRngIsomSxBF-1x·˙F1˙=F-1xRF-1F1˙
51 30 oveq2d RRingSRngFRRngIsomSxBF-1xRF-1F1˙=F-1xR1˙
52 5 14 1 32 38 ringridmd RRingSRngFRRngIsomSxBF-1xR1˙=F-1x
53 50 51 52 3eqtrd RRingSRngFRRngIsomSxBF-1x·˙F1˙=F-1x
54 53 fveq2d RRingSRngFRRngIsomSxBFF-1x·˙F1˙=FF-1x
55 2 3 rngcl SRngxBF1˙Bx·˙F1˙B
56 20 13 12 55 syl3anc RRingSRngFRRngIsomSxBx·˙F1˙B
57 f1ocnvfv2 F:BaseR1-1 ontoBx·˙F1˙BFF-1x·˙F1˙=x·˙F1˙
58 19 56 57 syl2an2r RRingSRngFRRngIsomSxBFF-1x·˙F1˙=x·˙F1˙
59 54 58 43 3eqtr3d RRingSRngFRRngIsomSxBx·˙F1˙=x
60 45 59 jca RRingSRngFRRngIsomSxBF1˙·˙x=xx·˙F1˙=x
61 60 ralrimiva RRingSRngFRRngIsomSxBF1˙·˙x=xx·˙F1˙=x