Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngisom1.1 | |
|
rngisom1.b | |
||
rngisom1.t | |
||
Assertion | rngisom1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngisom1.1 | |
|
2 | rngisom1.b | |
|
3 | rngisom1.t | |
|
4 | rngimcnv | |
|
5 | eqid | |
|
6 | 2 5 | rngimrnghm | |
7 | 4 6 | syl | |
8 | 7 | 3ad2ant3 | |
9 | 8 | adantr | |
10 | 1 2 | rngisomfv1 | |
11 | 10 | 3adant2 | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | eqid | |
|
15 | 2 3 14 | rnghmmul | |
16 | 9 12 13 15 | syl3anc | |
17 | 16 | fveq2d | |
18 | 5 2 | rngimf1o | |
19 | 18 | 3ad2ant3 | |
20 | simpl2 | |
|
21 | 2 3 | rngcl | |
22 | 20 12 13 21 | syl3anc | |
23 | f1ocnvfv2 | |
|
24 | 19 22 23 | syl2an2r | |
25 | 5 1 | ringidcl | |
26 | 25 | 3ad2ant1 | |
27 | 19 26 | jca | |
28 | 27 | adantr | |
29 | f1ocnvfv1 | |
|
30 | 28 29 | syl | |
31 | 30 | oveq1d | |
32 | simpl1 | |
|
33 | 2 5 | rngimf1o | |
34 | f1of | |
|
35 | 33 34 | syl | |
36 | 4 35 | syl | |
37 | 36 | 3ad2ant3 | |
38 | 37 | ffvelcdmda | |
39 | 5 14 1 32 38 | ringlidmd | |
40 | 31 39 | eqtrd | |
41 | 40 | fveq2d | |
42 | f1ocnvfv2 | |
|
43 | 19 42 | sylan | |
44 | 41 43 | eqtrd | |
45 | 17 24 44 | 3eqtr3d | |
46 | 4 | 3ad2ant3 | |
47 | 46 6 | syl | |
48 | 47 | adantr | |
49 | 2 3 14 | rnghmmul | |
50 | 48 13 12 49 | syl3anc | |
51 | 30 | oveq2d | |
52 | 5 14 1 32 38 | ringridmd | |
53 | 50 51 52 | 3eqtrd | |
54 | 53 | fveq2d | |
55 | 2 3 | rngcl | |
56 | 20 13 12 55 | syl3anc | |
57 | f1ocnvfv2 | |
|
58 | 19 56 57 | syl2an2r | |
59 | 54 58 43 | 3eqtr3d | |
60 | 45 59 | jca | |
61 | 60 | ralrimiva | |