Metamath Proof Explorer


Theorem rnghmmul

Description: A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses rnghmmul.x X = Base R
rnghmmul.m · ˙ = R
rnghmmul.n × ˙ = S
Assertion rnghmmul F R RngHomo S A X B X F A · ˙ B = F A × ˙ F B

Proof

Step Hyp Ref Expression
1 rnghmmul.x X = Base R
2 rnghmmul.m · ˙ = R
3 rnghmmul.n × ˙ = S
4 1 2 3 isrnghm F R RngHomo S R Rng S Rng F R GrpHom S x X y X F x · ˙ y = F x × ˙ F y
5 fvoveq1 x = A F x · ˙ y = F A · ˙ y
6 fveq2 x = A F x = F A
7 6 oveq1d x = A F x × ˙ F y = F A × ˙ F y
8 5 7 eqeq12d x = A F x · ˙ y = F x × ˙ F y F A · ˙ y = F A × ˙ F y
9 oveq2 y = B A · ˙ y = A · ˙ B
10 9 fveq2d y = B F A · ˙ y = F A · ˙ B
11 fveq2 y = B F y = F B
12 11 oveq2d y = B F A × ˙ F y = F A × ˙ F B
13 10 12 eqeq12d y = B F A · ˙ y = F A × ˙ F y F A · ˙ B = F A × ˙ F B
14 8 13 rspc2va A X B X x X y X F x · ˙ y = F x × ˙ F y F A · ˙ B = F A × ˙ F B
15 14 expcom x X y X F x · ˙ y = F x × ˙ F y A X B X F A · ˙ B = F A × ˙ F B
16 15 ad2antll R Rng S Rng F R GrpHom S x X y X F x · ˙ y = F x × ˙ F y A X B X F A · ˙ B = F A × ˙ F B
17 4 16 sylbi F R RngHomo S A X B X F A · ˙ B = F A × ˙ F B
18 17 3impib F R RngHomo S A X B X F A · ˙ B = F A × ˙ F B