Metamath Proof Explorer


Theorem isrnghm2d

Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses isrnghmd.b B=BaseR
isrnghmd.t ·˙=R
isrnghmd.u ×˙=S
isrnghmd.r φRRng
isrnghmd.s φSRng
isrnghmd.ht φxByBFx·˙y=Fx×˙Fy
isrnghm2d.f φFRGrpHomS
Assertion isrnghm2d φFRRngHomS

Proof

Step Hyp Ref Expression
1 isrnghmd.b B=BaseR
2 isrnghmd.t ·˙=R
3 isrnghmd.u ×˙=S
4 isrnghmd.r φRRng
5 isrnghmd.s φSRng
6 isrnghmd.ht φxByBFx·˙y=Fx×˙Fy
7 isrnghm2d.f φFRGrpHomS
8 4 5 jca φRRngSRng
9 6 ralrimivva φxByBFx·˙y=Fx×˙Fy
10 7 9 jca φFRGrpHomSxByBFx·˙y=Fx×˙Fy
11 1 2 3 isrnghm FRRngHomSRRngSRngFRGrpHomSxByBFx·˙y=Fx×˙Fy
12 8 10 11 sylanbrc φFRRngHomS