Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
Rng homomorphisms
isrnghm2d
Next ⟩
isrnghmd
Metamath Proof Explorer
Ascii
Unicode
Theorem
isrnghm2d
Description:
Demonstration of non-unital ring homomorphism.
(Contributed by
AV
, 23-Feb-2020)
Ref
Expression
Hypotheses
isrnghmd.b
⊢
B
=
Base
R
isrnghmd.t
⊢
·
˙
=
⋅
R
isrnghmd.u
⊢
×
˙
=
⋅
S
isrnghmd.r
⊢
φ
→
R
∈
Rng
isrnghmd.s
⊢
φ
→
S
∈
Rng
isrnghmd.ht
⊢
φ
∧
x
∈
B
∧
y
∈
B
→
F
⁡
x
·
˙
y
=
F
⁡
x
×
˙
F
⁡
y
isrnghm2d.f
⊢
φ
→
F
∈
R
GrpHom
S
Assertion
isrnghm2d
⊢
φ
→
F
∈
R
RngHomo
S
Proof
Step
Hyp
Ref
Expression
1
isrnghmd.b
⊢
B
=
Base
R
2
isrnghmd.t
⊢
·
˙
=
⋅
R
3
isrnghmd.u
⊢
×
˙
=
⋅
S
4
isrnghmd.r
⊢
φ
→
R
∈
Rng
5
isrnghmd.s
⊢
φ
→
S
∈
Rng
6
isrnghmd.ht
⊢
φ
∧
x
∈
B
∧
y
∈
B
→
F
⁡
x
·
˙
y
=
F
⁡
x
×
˙
F
⁡
y
7
isrnghm2d.f
⊢
φ
→
F
∈
R
GrpHom
S
8
4
5
jca
⊢
φ
→
R
∈
Rng
∧
S
∈
Rng
9
6
ralrimivva
⊢
φ
→
∀
x
∈
B
∀
y
∈
B
F
⁡
x
·
˙
y
=
F
⁡
x
×
˙
F
⁡
y
10
7
9
jca
⊢
φ
→
F
∈
R
GrpHom
S
∧
∀
x
∈
B
∀
y
∈
B
F
⁡
x
·
˙
y
=
F
⁡
x
×
˙
F
⁡
y
11
1
2
3
isrnghm
⊢
F
∈
R
RngHomo
S
↔
R
∈
Rng
∧
S
∈
Rng
∧
F
∈
R
GrpHom
S
∧
∀
x
∈
B
∀
y
∈
B
F
⁡
x
·
˙
y
=
F
⁡
x
×
˙
F
⁡
y
12
8
10
11
sylanbrc
⊢
φ
→
F
∈
R
RngHomo
S