Metamath Proof Explorer


Theorem isrnghm2d

Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses isrnghmd.b B = Base R
isrnghmd.t · ˙ = R
isrnghmd.u × ˙ = S
isrnghmd.r φ R Rng
isrnghmd.s φ S Rng
isrnghmd.ht φ x B y B F x · ˙ y = F x × ˙ F y
isrnghm2d.f φ F R GrpHom S
Assertion isrnghm2d φ F R RngHomo S

Proof

Step Hyp Ref Expression
1 isrnghmd.b B = Base R
2 isrnghmd.t · ˙ = R
3 isrnghmd.u × ˙ = S
4 isrnghmd.r φ R Rng
5 isrnghmd.s φ S Rng
6 isrnghmd.ht φ x B y B F x · ˙ y = F x × ˙ F y
7 isrnghm2d.f φ F R GrpHom S
8 4 5 jca φ R Rng S Rng
9 6 ralrimivva φ x B y B F x · ˙ y = F x × ˙ F y
10 7 9 jca φ F R GrpHom S x B y B F x · ˙ y = F x × ˙ F y
11 1 2 3 isrnghm F R RngHomo S R Rng S Rng F R GrpHom S x B y B F x · ˙ y = F x × ˙ F y
12 8 10 11 sylanbrc φ F R RngHomo S