Step |
Hyp |
Ref |
Expression |
1 |
|
isrnghmd.b |
|- B = ( Base ` R ) |
2 |
|
isrnghmd.t |
|- .x. = ( .r ` R ) |
3 |
|
isrnghmd.u |
|- .X. = ( .r ` S ) |
4 |
|
isrnghmd.r |
|- ( ph -> R e. Rng ) |
5 |
|
isrnghmd.s |
|- ( ph -> S e. Rng ) |
6 |
|
isrnghmd.ht |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
7 |
|
isrnghm2d.f |
|- ( ph -> F e. ( R GrpHom S ) ) |
8 |
4 5
|
jca |
|- ( ph -> ( R e. Rng /\ S e. Rng ) ) |
9 |
6
|
ralrimivva |
|- ( ph -> A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
10 |
7 9
|
jca |
|- ( ph -> ( F e. ( R GrpHom S ) /\ A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) ) |
11 |
1 2 3
|
isrnghm |
|- ( F e. ( R RngHomo S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) ) ) |
12 |
8 10 11
|
sylanbrc |
|- ( ph -> F e. ( R RngHomo S ) ) |