Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrnghmd.b | |- B = ( Base ` R ) |
|
isrnghmd.t | |- .x. = ( .r ` R ) |
||
isrnghmd.u | |- .X. = ( .r ` S ) |
||
isrnghmd.r | |- ( ph -> R e. Rng ) |
||
isrnghmd.s | |- ( ph -> S e. Rng ) |
||
isrnghmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
||
isrnghmd.c | |- C = ( Base ` S ) |
||
isrnghmd.p | |- .+ = ( +g ` R ) |
||
isrnghmd.q | |- .+^ = ( +g ` S ) |
||
isrnghmd.f | |- ( ph -> F : B --> C ) |
||
isrnghmd.hp | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
||
Assertion | isrnghmd | |- ( ph -> F e. ( R RngHomo S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnghmd.b | |- B = ( Base ` R ) |
|
2 | isrnghmd.t | |- .x. = ( .r ` R ) |
|
3 | isrnghmd.u | |- .X. = ( .r ` S ) |
|
4 | isrnghmd.r | |- ( ph -> R e. Rng ) |
|
5 | isrnghmd.s | |- ( ph -> S e. Rng ) |
|
6 | isrnghmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
|
7 | isrnghmd.c | |- C = ( Base ` S ) |
|
8 | isrnghmd.p | |- .+ = ( +g ` R ) |
|
9 | isrnghmd.q | |- .+^ = ( +g ` S ) |
|
10 | isrnghmd.f | |- ( ph -> F : B --> C ) |
|
11 | isrnghmd.hp | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
12 | rngabl | |- ( R e. Rng -> R e. Abel ) |
|
13 | ablgrp | |- ( R e. Abel -> R e. Grp ) |
|
14 | 4 12 13 | 3syl | |- ( ph -> R e. Grp ) |
15 | rngabl | |- ( S e. Rng -> S e. Abel ) |
|
16 | ablgrp | |- ( S e. Abel -> S e. Grp ) |
|
17 | 5 15 16 | 3syl | |- ( ph -> S e. Grp ) |
18 | 1 7 8 9 14 17 10 11 | isghmd | |- ( ph -> F e. ( R GrpHom S ) ) |
19 | 1 2 3 4 5 6 18 | isrnghm2d | |- ( ph -> F e. ( R RngHomo S ) ) |