Metamath Proof Explorer


Theorem isrnghmd

Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses isrnghmd.b B = Base R
isrnghmd.t · ˙ = R
isrnghmd.u × ˙ = S
isrnghmd.r φ R Rng
isrnghmd.s φ S Rng
isrnghmd.ht φ x B y B F x · ˙ y = F x × ˙ F y
isrnghmd.c C = Base S
isrnghmd.p + ˙ = + R
isrnghmd.q ˙ = + S
isrnghmd.f φ F : B C
isrnghmd.hp φ x B y B F x + ˙ y = F x ˙ F y
Assertion isrnghmd φ F R RngHomo S

Proof

Step Hyp Ref Expression
1 isrnghmd.b B = Base R
2 isrnghmd.t · ˙ = R
3 isrnghmd.u × ˙ = S
4 isrnghmd.r φ R Rng
5 isrnghmd.s φ S Rng
6 isrnghmd.ht φ x B y B F x · ˙ y = F x × ˙ F y
7 isrnghmd.c C = Base S
8 isrnghmd.p + ˙ = + R
9 isrnghmd.q ˙ = + S
10 isrnghmd.f φ F : B C
11 isrnghmd.hp φ x B y B F x + ˙ y = F x ˙ F y
12 rngabl R Rng R Abel
13 ablgrp R Abel R Grp
14 4 12 13 3syl φ R Grp
15 rngabl S Rng S Abel
16 ablgrp S Abel S Grp
17 5 15 16 3syl φ S Grp
18 1 7 8 9 14 17 10 11 isghmd φ F R GrpHom S
19 1 2 3 4 5 6 18 isrnghm2d φ F R RngHomo S