Database
BASIC ALGEBRAIC STRUCTURES
Subring algebras and ideals
Two-sided ideals and quotient rings
Condition for a non-unital ring to be unital
rngringbd
Metamath Proof Explorer
Description: A non-unital ring is unital if and only if there is a (two-sided) ideal
of the ring which is unital, and the quotient of the ring and the ideal
is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV , 20-Feb-2025)
Ref
Expression
Hypotheses
rngringbd.r
|- ( ph -> R e. Rng )
rngringbd.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rngringbd.j
|- J = ( R |`s I )
rngringbd.u
|- ( ph -> J e. Ring )
rngringbd.q
|- Q = ( R /s ( R ~QG I ) )
Assertion
rngringbd
|- ( ph -> ( R e. Ring <-> Q e. Ring ) )
Proof
Step
Hyp
Ref
Expression
1
rngringbd.r
|- ( ph -> R e. Rng )
2
rngringbd.i
|- ( ph -> I e. ( 2Ideal ` R ) )
3
rngringbd.j
|- J = ( R |`s I )
4
rngringbd.u
|- ( ph -> J e. Ring )
5
rngringbd.q
|- Q = ( R /s ( R ~QG I ) )
6
1 2 3 4 5
rngringbdlem1
|- ( ( ph /\ R e. Ring ) -> Q e. Ring )
7
1 2 3 4 5
rngringbdlem2
|- ( ( ph /\ Q e. Ring ) -> R e. Ring )
8
6 7
impbida
|- ( ph -> ( R e. Ring <-> Q e. Ring ) )