Metamath Proof Explorer


Theorem rngringbd

Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses rngringbd.r
|- ( ph -> R e. Rng )
rngringbd.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rngringbd.j
|- J = ( R |`s I )
rngringbd.u
|- ( ph -> J e. Ring )
rngringbd.q
|- Q = ( R /s ( R ~QG I ) )
Assertion rngringbd
|- ( ph -> ( R e. Ring <-> Q e. Ring ) )

Proof

Step Hyp Ref Expression
1 rngringbd.r
 |-  ( ph -> R e. Rng )
2 rngringbd.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rngringbd.j
 |-  J = ( R |`s I )
4 rngringbd.u
 |-  ( ph -> J e. Ring )
5 rngringbd.q
 |-  Q = ( R /s ( R ~QG I ) )
6 1 2 3 4 5 rngringbdlem1
 |-  ( ( ph /\ R e. Ring ) -> Q e. Ring )
7 1 2 3 4 5 rngringbdlem2
 |-  ( ( ph /\ Q e. Ring ) -> R e. Ring )
8 6 7 impbida
 |-  ( ph -> ( R e. Ring <-> Q e. Ring ) )