Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
1 2
|
2idl1 |
|- ( R e. Ring -> ( Base ` R ) e. ( 2Ideal ` R ) ) |
4 |
|
oveq2 |
|- ( i = ( Base ` R ) -> ( R |`s i ) = ( R |`s ( Base ` R ) ) ) |
5 |
4
|
eleq1d |
|- ( i = ( Base ` R ) -> ( ( R |`s i ) e. Ring <-> ( R |`s ( Base ` R ) ) e. Ring ) ) |
6 |
|
oveq2 |
|- ( i = ( Base ` R ) -> ( R ~QG i ) = ( R ~QG ( Base ` R ) ) ) |
7 |
6
|
oveq2d |
|- ( i = ( Base ` R ) -> ( R /s ( R ~QG i ) ) = ( R /s ( R ~QG ( Base ` R ) ) ) ) |
8 |
7
|
eleq1d |
|- ( i = ( Base ` R ) -> ( ( R /s ( R ~QG i ) ) e. Ring <-> ( R /s ( R ~QG ( Base ` R ) ) ) e. Ring ) ) |
9 |
5 8
|
anbi12d |
|- ( i = ( Base ` R ) -> ( ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) <-> ( ( R |`s ( Base ` R ) ) e. Ring /\ ( R /s ( R ~QG ( Base ` R ) ) ) e. Ring ) ) ) |
10 |
9
|
adantl |
|- ( ( R e. Ring /\ i = ( Base ` R ) ) -> ( ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) <-> ( ( R |`s ( Base ` R ) ) e. Ring /\ ( R /s ( R ~QG ( Base ` R ) ) ) e. Ring ) ) ) |
11 |
2
|
subrgid |
|- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
12 |
|
eqid |
|- ( R |`s ( Base ` R ) ) = ( R |`s ( Base ` R ) ) |
13 |
12
|
subrgring |
|- ( ( Base ` R ) e. ( SubRing ` R ) -> ( R |`s ( Base ` R ) ) e. Ring ) |
14 |
11 13
|
syl |
|- ( R e. Ring -> ( R |`s ( Base ` R ) ) e. Ring ) |
15 |
|
eqid |
|- ( R /s ( R ~QG ( Base ` R ) ) ) = ( R /s ( R ~QG ( Base ` R ) ) ) |
16 |
15 1
|
qusring |
|- ( ( R e. Ring /\ ( Base ` R ) e. ( 2Ideal ` R ) ) -> ( R /s ( R ~QG ( Base ` R ) ) ) e. Ring ) |
17 |
3 16
|
mpdan |
|- ( R e. Ring -> ( R /s ( R ~QG ( Base ` R ) ) ) e. Ring ) |
18 |
14 17
|
jca |
|- ( R e. Ring -> ( ( R |`s ( Base ` R ) ) e. Ring /\ ( R /s ( R ~QG ( Base ` R ) ) ) e. Ring ) ) |
19 |
3 10 18
|
rspcedvd |
|- ( R e. Ring -> E. i e. ( 2Ideal ` R ) ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) ) |