Metamath Proof Explorer


Theorem ring2idlqus

Description: For every unital ring there is a (two-sided) ideal of the ring (in fact the base set of the ring itself) which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 13-Feb-2025)

Ref Expression
Assertion ring2idlqus R Ring i 2Ideal R R 𝑠 i Ring R / 𝑠 R ~ QG i Ring

Proof

Step Hyp Ref Expression
1 eqid 2Ideal R = 2Ideal R
2 eqid Base R = Base R
3 1 2 2idl1 R Ring Base R 2Ideal R
4 oveq2 i = Base R R 𝑠 i = R 𝑠 Base R
5 4 eleq1d i = Base R R 𝑠 i Ring R 𝑠 Base R Ring
6 oveq2 i = Base R R ~ QG i = R ~ QG Base R
7 6 oveq2d i = Base R R / 𝑠 R ~ QG i = R / 𝑠 R ~ QG Base R
8 7 eleq1d i = Base R R / 𝑠 R ~ QG i Ring R / 𝑠 R ~ QG Base R Ring
9 5 8 anbi12d i = Base R R 𝑠 i Ring R / 𝑠 R ~ QG i Ring R 𝑠 Base R Ring R / 𝑠 R ~ QG Base R Ring
10 9 adantl R Ring i = Base R R 𝑠 i Ring R / 𝑠 R ~ QG i Ring R 𝑠 Base R Ring R / 𝑠 R ~ QG Base R Ring
11 2 subrgid R Ring Base R SubRing R
12 eqid R 𝑠 Base R = R 𝑠 Base R
13 12 subrgring Base R SubRing R R 𝑠 Base R Ring
14 11 13 syl R Ring R 𝑠 Base R Ring
15 eqid R / 𝑠 R ~ QG Base R = R / 𝑠 R ~ QG Base R
16 15 1 qusring R Ring Base R 2Ideal R R / 𝑠 R ~ QG Base R Ring
17 3 16 mpdan R Ring R / 𝑠 R ~ QG Base R Ring
18 14 17 jca R Ring R 𝑠 Base R Ring R / 𝑠 R ~ QG Base R Ring
19 3 10 18 rspcedvd R Ring i 2Ideal R R 𝑠 i Ring R / 𝑠 R ~ QG i Ring