Metamath Proof Explorer


Theorem ring2idlqus

Description: For every unital ring there is a (two-sided) ideal of the ring (in fact the base set of the ring itself) which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 13-Feb-2025)

Ref Expression
Assertion ring2idlqus RRingi2IdealRR𝑠iRingR/𝑠R~QGiRing

Proof

Step Hyp Ref Expression
1 eqid 2IdealR=2IdealR
2 eqid BaseR=BaseR
3 1 2 2idl1 RRingBaseR2IdealR
4 oveq2 i=BaseRR𝑠i=R𝑠BaseR
5 4 eleq1d i=BaseRR𝑠iRingR𝑠BaseRRing
6 oveq2 i=BaseRR~QGi=R~QGBaseR
7 6 oveq2d i=BaseRR/𝑠R~QGi=R/𝑠R~QGBaseR
8 7 eleq1d i=BaseRR/𝑠R~QGiRingR/𝑠R~QGBaseRRing
9 5 8 anbi12d i=BaseRR𝑠iRingR/𝑠R~QGiRingR𝑠BaseRRingR/𝑠R~QGBaseRRing
10 9 adantl RRingi=BaseRR𝑠iRingR/𝑠R~QGiRingR𝑠BaseRRingR/𝑠R~QGBaseRRing
11 2 subrgid RRingBaseRSubRingR
12 eqid R𝑠BaseR=R𝑠BaseR
13 12 subrgring BaseRSubRingRR𝑠BaseRRing
14 11 13 syl RRingR𝑠BaseRRing
15 eqid R/𝑠R~QGBaseR=R/𝑠R~QGBaseR
16 15 1 qusring RRingBaseR2IdealRR/𝑠R~QGBaseRRing
17 3 16 mpdan RRingR/𝑠R~QGBaseRRing
18 14 17 jca RRingR𝑠BaseRRingR/𝑠R~QGBaseRRing
19 3 10 18 rspcedvd RRingi2IdealRR𝑠iRingR/𝑠R~QGiRing