Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
1 2
|
2idl1 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( 2Ideal ‘ 𝑅 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑖 = ( Base ‘ 𝑅 ) → ( 𝑅 ↾s 𝑖 ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑖 = ( Base ‘ 𝑅 ) → ( ( 𝑅 ↾s 𝑖 ) ∈ Ring ↔ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ∈ Ring ) ) |
6 |
|
oveq2 |
⊢ ( 𝑖 = ( Base ‘ 𝑅 ) → ( 𝑅 ~QG 𝑖 ) = ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑖 = ( Base ‘ 𝑅 ) → ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑖 = ( Base ‘ 𝑅 ) → ( ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) ∈ Ring ↔ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ∈ Ring ) ) |
9 |
5 8
|
anbi12d |
⊢ ( 𝑖 = ( Base ‘ 𝑅 ) → ( ( ( 𝑅 ↾s 𝑖 ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) ∈ Ring ) ↔ ( ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ∈ Ring ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 = ( Base ‘ 𝑅 ) ) → ( ( ( 𝑅 ↾s 𝑖 ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) ∈ Ring ) ↔ ( ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ∈ Ring ) ) ) |
11 |
2
|
subrgid |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
12 |
|
eqid |
⊢ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) |
13 |
12
|
subrgring |
⊢ ( ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ∈ Ring ) |
14 |
11 13
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ∈ Ring ) |
15 |
|
eqid |
⊢ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) |
16 |
15 1
|
qusring |
⊢ ( ( 𝑅 ∈ Ring ∧ ( Base ‘ 𝑅 ) ∈ ( 2Ideal ‘ 𝑅 ) ) → ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ∈ Ring ) |
17 |
3 16
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ∈ Ring ) |
18 |
14 17
|
jca |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ∈ Ring ) ) |
19 |
3 10 18
|
rspcedvd |
⊢ ( 𝑅 ∈ Ring → ∃ 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) ( ( 𝑅 ↾s 𝑖 ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) ∈ Ring ) ) |