Metamath Proof Explorer


Theorem ring2idlqusb

Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025)

Ref Expression
Assertion ring2idlqusb ( 𝑅 ∈ Rng → ( 𝑅 ∈ Ring ↔ ∃ 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) ( ( 𝑅s 𝑖 ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) ∈ Ring ) ) )

Proof

Step Hyp Ref Expression
1 ring2idlqus ( 𝑅 ∈ Ring → ∃ 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) ( ( 𝑅s 𝑖 ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) ∈ Ring ) )
2 simpll ( ( ( 𝑅 ∈ Rng ∧ 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) ) ∧ ( 𝑅s 𝑖 ) ∈ Ring ) → 𝑅 ∈ Rng )
3 simplr ( ( ( 𝑅 ∈ Rng ∧ 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) ) ∧ ( 𝑅s 𝑖 ) ∈ Ring ) → 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) )
4 eqid ( 𝑅s 𝑖 ) = ( 𝑅s 𝑖 )
5 simpr ( ( ( 𝑅 ∈ Rng ∧ 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) ) ∧ ( 𝑅s 𝑖 ) ∈ Ring ) → ( 𝑅s 𝑖 ) ∈ Ring )
6 eqid ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) = ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) )
7 2 3 4 5 6 rngringbdlem2 ( ( ( ( 𝑅 ∈ Rng ∧ 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) ) ∧ ( 𝑅s 𝑖 ) ∈ Ring ) ∧ ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) ∈ Ring ) → 𝑅 ∈ Ring )
8 7 expl ( ( 𝑅 ∈ Rng ∧ 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( ( ( 𝑅s 𝑖 ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) ∈ Ring ) → 𝑅 ∈ Ring ) )
9 8 rexlimdva ( 𝑅 ∈ Rng → ( ∃ 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) ( ( 𝑅s 𝑖 ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) ∈ Ring ) → 𝑅 ∈ Ring ) )
10 1 9 impbid2 ( 𝑅 ∈ Rng → ( 𝑅 ∈ Ring ↔ ∃ 𝑖 ∈ ( 2Ideal ‘ 𝑅 ) ( ( 𝑅s 𝑖 ) ∈ Ring ∧ ( 𝑅 /s ( 𝑅 ~QG 𝑖 ) ) ∈ Ring ) ) )