Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rngqiprngfu.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rngqiprngfu.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rngqiprngfu.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rngqiprngfu.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rngqiprngfu.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rngqiprngfu.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngfu.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngfu.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngfu.v |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
12 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
13 |
11 12
|
ringidcl |
⊢ ( 𝑄 ∈ Ring → ( 1r ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
14 |
10 13
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
15 |
9
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ∼ ) ) |
16 |
5
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
17 |
8
|
ovexi |
⊢ ∼ ∈ V |
18 |
17
|
a1i |
⊢ ( 𝜑 → ∼ ∈ V ) |
19 |
15 16 18 1
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ∼ ) = ( Base ‘ 𝑄 ) ) |
20 |
14 19
|
eleqtrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) ∈ ( 𝐵 / ∼ ) ) |
21 |
|
fvexd |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) ∈ V ) |
22 |
|
elqsg |
⊢ ( ( 1r ‘ 𝑄 ) ∈ V → ( ( 1r ‘ 𝑄 ) ∈ ( 𝐵 / ∼ ) ↔ ∃ 𝑥 ∈ 𝐵 ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑄 ) ∈ ( 𝐵 / ∼ ) ↔ ∃ 𝑥 ∈ 𝐵 ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) ) |
24 |
20 23
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) |