| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngqiprngfu.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 2 |
|
rngqiprngfu.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 3 |
|
rngqiprngfu.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
| 4 |
|
rngqiprngfu.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
| 5 |
|
rngqiprngfu.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
rngqiprngfu.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 7 |
|
rngqiprngfu.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
| 8 |
|
rngqiprngfu.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
| 9 |
|
rngqiprngfu.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
| 10 |
|
rngqiprngfu.v |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 12 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
| 13 |
11 12
|
ringidcl |
⊢ ( 𝑄 ∈ Ring → ( 1r ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
| 14 |
10 13
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
| 15 |
9
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ∼ ) ) |
| 16 |
5
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 17 |
8
|
ovexi |
⊢ ∼ ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ∼ ∈ V ) |
| 19 |
15 16 18 1
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ∼ ) = ( Base ‘ 𝑄 ) ) |
| 20 |
14 19
|
eleqtrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) ∈ ( 𝐵 / ∼ ) ) |
| 21 |
|
fvexd |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) ∈ V ) |
| 22 |
|
elqsg |
⊢ ( ( 1r ‘ 𝑄 ) ∈ V → ( ( 1r ‘ 𝑄 ) ∈ ( 𝐵 / ∼ ) ↔ ∃ 𝑥 ∈ 𝐵 ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑄 ) ∈ ( 𝐵 / ∼ ) ↔ ∃ 𝑥 ∈ 𝐵 ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) ) |
| 24 |
20 23
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) |