Metamath Proof Explorer


Theorem rngqiprngfulem1

Description: Lemma 1 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
rngqiprngfu.t · = ( .r𝑅 )
rngqiprngfu.1 1 = ( 1r𝐽 )
rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
rngqiprngfu.q 𝑄 = ( 𝑅 /s )
rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
Assertion rngqiprngfulem1 ( 𝜑 → ∃ 𝑥𝐵 ( 1r𝑄 ) = [ 𝑥 ] )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
2 rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
4 rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
5 rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
6 rngqiprngfu.t · = ( .r𝑅 )
7 rngqiprngfu.1 1 = ( 1r𝐽 )
8 rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngfu.q 𝑄 = ( 𝑅 /s )
10 rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
11 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
12 eqid ( 1r𝑄 ) = ( 1r𝑄 )
13 11 12 ringidcl ( 𝑄 ∈ Ring → ( 1r𝑄 ) ∈ ( Base ‘ 𝑄 ) )
14 10 13 syl ( 𝜑 → ( 1r𝑄 ) ∈ ( Base ‘ 𝑄 ) )
15 9 a1i ( 𝜑𝑄 = ( 𝑅 /s ) )
16 5 a1i ( 𝜑𝐵 = ( Base ‘ 𝑅 ) )
17 8 ovexi ∈ V
18 17 a1i ( 𝜑 ∈ V )
19 15 16 18 1 qusbas ( 𝜑 → ( 𝐵 / ) = ( Base ‘ 𝑄 ) )
20 14 19 eleqtrrd ( 𝜑 → ( 1r𝑄 ) ∈ ( 𝐵 / ) )
21 fvexd ( 𝜑 → ( 1r𝑄 ) ∈ V )
22 elqsg ( ( 1r𝑄 ) ∈ V → ( ( 1r𝑄 ) ∈ ( 𝐵 / ) ↔ ∃ 𝑥𝐵 ( 1r𝑄 ) = [ 𝑥 ] ) )
23 21 22 syl ( 𝜑 → ( ( 1r𝑄 ) ∈ ( 𝐵 / ) ↔ ∃ 𝑥𝐵 ( 1r𝑄 ) = [ 𝑥 ] ) )
24 20 23 mpbid ( 𝜑 → ∃ 𝑥𝐵 ( 1r𝑄 ) = [ 𝑥 ] )